blob: b31eaa1299acc1a40e6f818c5f15fb3e63514fc0 [file] [log] [blame]
/*
* Copyright (c) 2016, CESAR.
* All rights reserved.
*
* This software may be modified and distributed under the terms
* of the BSD license. See the LICENSE file for details.
*
*/
#include <stdint.h>
#include <stdio.h>
#include <errno.h>
#include <string.h>
#include "include/time.h"
#include "knot_thing_config.h"
#include "knot_types.h"
#include "knot_thing_main.h"
// TODO: normalize all returning error codes
#define KNOT_THING_EMPTY_ITEM "EMPTY ITEM"
static uint8_t last_id; /* Last registered id */
static uint8_t evt_sensor_id;
/* Control the upper lower mensage flow */
static uint8_t lower_flag[KNOT_THING_DATA_MAX];
static uint8_t upper_flag[KNOT_THING_DATA_MAX];
static struct _data_items{
// schema values
uint8_t value_type; // KNOT_VALUE_TYPE_* (int, float, bool, raw)
uint8_t unit; // KNOT_UNIT_*
uint16_t type_id; // KNOT_TYPE_ID_*
const char *name; // App defined data item name
// data values
knot_value_types last_data;
uint8_t *last_value_raw;
// config values
knot_config config; // Flags indicating when data will be sent
// time values
uint32_t last_timeout; // Stores the last time the data was sent
// Data read/write functions
knot_data_functions functions;
} data_items[KNOT_THING_DATA_MAX];
static void reset_data_items(void)
{
struct _data_items *pdata = data_items;
int8_t count;
last_id = 0;
evt_sensor_id = 0;
for (count = 0; count < KNOT_THING_DATA_MAX; ++count, ++pdata) {
pdata->name = KNOT_THING_EMPTY_ITEM;
pdata->type_id = KNOT_TYPE_ID_INVALID;
pdata->unit = KNOT_UNIT_NOT_APPLICABLE;
pdata->value_type = KNOT_VALUE_TYPE_INVALID;
pdata->config.event_flags = KNOT_EVT_FLAG_UNREGISTERED;
/* As "last_data" is a union, we need just to set the "biggest" member*/
pdata->last_data.val_f.multiplier = 1;
pdata->last_data.val_f.value_int = 0;
pdata->last_data.val_f.value_dec = 0;
/* As "lower_limit" is a union, we need just to set the "biggest" member */
pdata->config.lower_limit.val_f.multiplier = 1;
pdata->config.lower_limit.val_f.value_int = 0;
pdata->config.lower_limit.val_f.value_dec = 0;
/* As "upper_limit" is a union, we need just to set the "biggest" member */
pdata->config.upper_limit.val_f.multiplier = 1;
pdata->config.upper_limit.val_f.value_int = 0;
pdata->config.upper_limit.val_f.value_dec = 0;
pdata->last_value_raw = NULL;
/* As "functions" is a union, we need just to set only one of its members */
pdata->functions.int_f.read = NULL;
pdata->functions.int_f.write = NULL;
lower_flag[count] = 0;
upper_flag[count] = 0;
}
}
static int data_function_is_valid(knot_data_functions *func)
{
if (func == NULL)
return -1;
if (func->int_f.read == NULL && func->int_f.write == NULL)
return -1;
return 0;
}
static uint8_t item_is_unregistered(uint8_t id)
{
return (!(data_items[id].config.event_flags & KNOT_EVT_FLAG_UNREGISTERED));
}
void knot_thing_exit(void)
{
}
int8_t knot_thing_register_raw_data_item(uint8_t id, const char *name,
uint8_t *raw_buffer, uint8_t raw_buffer_len, uint16_t type_id,
uint8_t value_type, uint8_t unit, knot_data_functions *func)
{
if (raw_buffer == NULL)
return -1;
if (raw_buffer_len != KNOT_DATA_RAW_SIZE)
return -1;
if (knot_thing_register_data_item(id, name, type_id, value_type,
unit, func) != 0)
return -1;
data_items[id].last_value_raw = raw_buffer;
return 0;
}
int8_t knot_thing_register_data_item(uint8_t id, const char *name,
uint16_t type_id, uint8_t value_type,
uint8_t unit, knot_data_functions *func)
{
if (id >= KNOT_THING_DATA_MAX || (item_is_unregistered(id) != 0) ||
(knot_schema_is_valid(type_id, value_type, unit) != 0) ||
name == NULL || (data_function_is_valid(func) != 0))
return -1;
data_items[id].name = name;
data_items[id].type_id = type_id;
data_items[id].unit = unit;
data_items[id].value_type = value_type;
// TODO: load flags and limits from persistent storage
/* Remove KNOT_EVT_FLAG_UNREGISTERED flag */
data_items[id].config.event_flags = KNOT_EVT_FLAG_NONE;
/* As "last_data" is a union, we need just to set the "biggest" member */
data_items[id].last_data.val_f.multiplier = 1;
data_items[id].last_data.val_f.value_int = 0;
data_items[id].last_data.val_f.value_dec = 0;
/* As "lower_limit" is a union, we need just to set the "biggest" member */
data_items[id].config.lower_limit.val_f.multiplier = 1;
data_items[id].config.lower_limit.val_f.value_int = 0;
data_items[id].config.lower_limit.val_f.value_dec = 0;
/* As "upper_limit" is a union, we need just to set the "biggest" member */
data_items[id].config.upper_limit.val_f.multiplier = 1;
data_items[id].config.upper_limit.val_f.value_int = 0;
data_items[id].config.upper_limit.val_f.value_dec = 0;
data_items[id].last_value_raw = NULL;
/* As "functions" is a union, we need just to set only one of its members */
data_items[id].functions.int_f.read = func->int_f.read;
data_items[id].functions.int_f.write = func->int_f.write;
if (id > last_id)
last_id = id;
return 0;
}
int knot_thing_config_data_item(uint8_t id, uint8_t evflags, uint16_t time_sec,
knot_value_types *lower,
knot_value_types *upper)
{
/*FIXME: Check if config is valid */
if ((id >= KNOT_THING_DATA_MAX) || item_is_unregistered(id) == 0)
return -1;
data_items[id].config.event_flags = evflags;
data_items[id].config.time_sec = time_sec;
/*
* "lower/upper limit" is a union, we need
* just to set the "biggest" member.
*/
if (lower)
memcpy(&(data_items[id].config.lower_limit), lower,
sizeof(*lower));
if (upper)
memcpy(&(data_items[id].config.upper_limit), upper,
sizeof(*upper));
// TODO: store flags and limits on persistent storage
return 0;
}
int knot_thing_create_schema(uint8_t i, knot_msg_schema *msg)
{
knot_msg_schema entry;
memset(&entry, 0, sizeof(entry));
msg->hdr.type = KNOT_MSG_SCHEMA;
if ((i >= KNOT_THING_DATA_MAX) || item_is_unregistered(i) == 0)
return KNOT_INVALID_DEVICE;
msg->sensor_id = i;
entry.values.value_type = data_items[i].value_type;
entry.values.unit = data_items[i].unit;
entry.values.type_id = data_items[i].type_id;
strncpy(entry.values.name, data_items[i].name,
sizeof(entry.values.name));
msg->hdr.payload_len = sizeof(entry.values) + sizeof(entry.sensor_id);
memcpy(&msg->values, &entry.values, sizeof(msg->values));
/*
* Every time a data item is registered we must update the max
* number of sensor_id so we know when schema ends;
*/
if (i == last_id)
msg->hdr.type = KNOT_MSG_SCHEMA_END;
return KNOT_SUCCESS;
}
static int data_item_read(uint8_t id, knot_msg_data *data)
{
uint8_t len = 0, uint8_val = 0, uint8_buffer[KNOT_DATA_RAW_SIZE];
int32_t int32_val = 0, multiplier = 0;
uint32_t uint32_val = 0;
if ((id >= KNOT_THING_DATA_MAX) || item_is_unregistered(id) == 0)
return -1;
switch (data_items[id].value_type) {
case KNOT_VALUE_TYPE_RAW:
if (data_items[id].functions.raw_f.read == NULL)
return -1;
if (data_items[id].functions.raw_f.read(uint8_buffer, &uint8_val) < 0)
return -1;
len = uint8_val;
memcpy(data->payload.raw, uint8_buffer, len);
data->hdr.payload_len = len;
break;
case KNOT_VALUE_TYPE_BOOL:
if (data_items[id].functions.bool_f.read == NULL)
return -1;
if (data_items[id].functions.bool_f.read(&uint8_val) < 0)
return -1;
len = sizeof(data->payload.values.val_b);
data->payload.values.val_b = uint8_val;
data->hdr.payload_len = len;
break;
case KNOT_VALUE_TYPE_INT:
if (data_items[id].functions.int_f.read == NULL)
return -1;
if (data_items[id].functions.int_f.read(&int32_val, &multiplier) < 0)
return -1;
len = sizeof(data->payload.values.val_i);
data->payload.values.val_i.value = int32_val;
data->payload.values.val_i.multiplier = multiplier;
data->hdr.payload_len = len;
break;
case KNOT_VALUE_TYPE_FLOAT:
if (data_items[id].functions.float_f.read == NULL)
return -1;
if (data_items[id].functions.float_f.read(&int32_val, &uint32_val, &multiplier) < 0)
return -1;
len = sizeof(data->payload.values.val_f);
data->payload.values.val_f.value_int = int32_val;
data->payload.values.val_f.value_dec = uint32_val;
data->payload.values.val_f.multiplier = multiplier;
data->hdr.payload_len = len;
break;
default:
return -1;
}
return 0;
}
static int data_item_write(uint8_t id, knot_msg_data *data)
{
int ret_val = -1;
uint8_t len;
if ((id >= KNOT_THING_DATA_MAX) || item_is_unregistered(id) == 0)
return -1;
switch (data_items[id].value_type) {
case KNOT_VALUE_TYPE_RAW:
len = sizeof(data->payload.raw);
if (data_items[id].functions.raw_f.write == NULL)
goto done;
ret_val = data_items[id].functions.raw_f.write(
data->payload.raw, &len);
break;
case KNOT_VALUE_TYPE_BOOL:
if (data_items[id].functions.bool_f.write == NULL)
goto done;
ret_val = data_items[id].functions.bool_f.write(
&data->payload.values.val_b);
break;
case KNOT_VALUE_TYPE_INT:
if (data_items[id].functions.int_f.write == NULL)
goto done;
ret_val = data_items[id].functions.int_f.write(
&data->payload.values.val_i.value,
&data->payload.values.val_i.multiplier);
break;
case KNOT_VALUE_TYPE_FLOAT:
if (data_items[id].functions.float_f.write == NULL)
goto done;
ret_val = data_items[id].functions.float_f.write(
&data->payload.values.val_f.value_int,
&data->payload.values.val_f.value_dec,
&data->payload.values.val_f.multiplier);
break;
default:
break;
}
done:
return ret_val;
}
int8_t knot_thing_run(void)
{
return knot_thing_protocol_run();
}
static int verify_events(knot_msg_data *data)
{
uint8_t comparison = 0;
/* Current time in miliseconds to verify sensor timeout */
uint32_t current_time;
/*
* For all registered data items: verify if value
* changed according to the events registered.
*/
if (evt_sensor_id >= KNOT_THING_DATA_MAX) {
evt_sensor_id = 0;
return -1;
} else if (item_is_unregistered(evt_sensor_id) == 0) {
evt_sensor_id++;
return -1;
}
if (data_item_read(evt_sensor_id, data) < 0) {
evt_sensor_id++;
return -1;
}
/* Value did not change or error: return -1, 0 means send data */
switch (data_items[evt_sensor_id].value_type) {
case KNOT_VALUE_TYPE_RAW:
if (data_items[evt_sensor_id].last_value_raw == NULL)
return -1;
if (data->hdr.payload_len != KNOT_DATA_RAW_SIZE)
return -1;
if (memcmp(data_items[evt_sensor_id].last_value_raw, data->payload.raw, KNOT_DATA_RAW_SIZE) == 0)
return -1;
memcpy(data_items[evt_sensor_id].last_value_raw, data->payload.raw, KNOT_DATA_RAW_SIZE);
comparison = 1;
break;
case KNOT_VALUE_TYPE_BOOL:
if (data->payload.values.val_b != data_items[evt_sensor_id].last_data.val_b) {
comparison |= (KNOT_EVT_FLAG_CHANGE & data_items[evt_sensor_id].config.event_flags);
data_items[evt_sensor_id].last_data.val_b = data->payload.values.val_b;
}
break;
case KNOT_VALUE_TYPE_INT:
// TODO: add multiplier to comparison
// TODO: bouncing between lower/upper and band. (add timer or threshold)
if (data->payload.values.val_i.value < data_items[evt_sensor_id].config.lower_limit.val_i.value && lower_flag[evt_sensor_id] == 0) {
comparison |= (KNOT_EVT_FLAG_LOWER_THRESHOLD & data_items[evt_sensor_id].config.event_flags);
upper_flag[evt_sensor_id] = 0;
lower_flag[evt_sensor_id] = 1;
} else if (data->payload.values.val_i.value > data_items[evt_sensor_id].config.upper_limit.val_i.value && upper_flag[evt_sensor_id] == 0) {
comparison |= (KNOT_EVT_FLAG_UPPER_THRESHOLD & data_items[evt_sensor_id].config.event_flags);
upper_flag[evt_sensor_id] = 1;
lower_flag[evt_sensor_id] = 0;
} else {
if (data->payload.values.val_i.value < data_items[evt_sensor_id].config.upper_limit.val_i.value)
upper_flag[evt_sensor_id] = 0;
if (data->payload.values.val_i.value > data_items[evt_sensor_id].config.lower_limit.val_i.value)
lower_flag[evt_sensor_id] = 0;
}
if (data->payload.values.val_i.value != data_items[evt_sensor_id].last_data.val_i.value)
comparison |= (KNOT_EVT_FLAG_CHANGE & data_items[evt_sensor_id].config.event_flags);
data_items[evt_sensor_id].last_data.val_i.value = data->payload.values.val_i.value;
data_items[evt_sensor_id].last_data.val_i.multiplier = data->payload.values.val_i.multiplier;
break;
case KNOT_VALUE_TYPE_FLOAT:
// TODO: add multiplier and decimal part to comparison
// TODO: bouncing between lower/upper and band. (add timer or threshold)
if (data->payload.values.val_f.value_int < data_items[evt_sensor_id].config.lower_limit.val_f.value_int && lower_flag[evt_sensor_id] == 0) {
comparison |= (KNOT_EVT_FLAG_LOWER_THRESHOLD & data_items[evt_sensor_id].config.event_flags);
upper_flag[evt_sensor_id] = 0;
lower_flag[evt_sensor_id] = 1;
} else if (data->payload.values.val_f.value_int > data_items[evt_sensor_id].config.upper_limit.val_f.value_int && upper_flag[evt_sensor_id] == 0) {
comparison |= (KNOT_EVT_FLAG_UPPER_THRESHOLD & data_items[evt_sensor_id].config.event_flags);
upper_flag[evt_sensor_id] = 1;
lower_flag[evt_sensor_id] = 0;
} else {
if (data->payload.values.val_i.value < data_items[evt_sensor_id].config.upper_limit.val_i.value)
upper_flag[evt_sensor_id] = 0;
if (data->payload.values.val_i.value > data_items[evt_sensor_id].config.lower_limit.val_i.value)
lower_flag[evt_sensor_id] = 0;
}
if (data->payload.values.val_f.value_int != data_items[evt_sensor_id].last_data.val_f.value_int)
comparison |= (KNOT_EVT_FLAG_CHANGE & data_items[evt_sensor_id].config.event_flags);
data_items[evt_sensor_id].last_data.val_f.value_int = data->payload.values.val_f.value_int;
data_items[evt_sensor_id].last_data.val_f.value_dec = data->payload.values.val_f.value_dec;
data_items[evt_sensor_id].last_data.val_f.multiplier = data->payload.values.val_f.multiplier;
break;
default:
// This data item is not registered with a valid value type
evt_sensor_id++;
return -1;
}
/*
* It is checked if the data is in time to be updated (time overflow).
* If yes, the last timeout value and the comparison variable are updated with the time flag.
*/
current_time = hal_time_ms();
if ((current_time - data_items[evt_sensor_id].last_timeout) >=
(uint32_t) data_items[evt_sensor_id].config.time_sec * 1000) {
data_items[evt_sensor_id].last_timeout = current_time;
comparison |= (KNOT_EVT_FLAG_TIME & data_items[evt_sensor_id].config.event_flags);
}
/*
* To avoid an extensive loop we keep an variable to iterate over all
* sensors/actuators once at each loop. When the last sensor was verified
* we reinitialize the counter, otherwise we just increment it.
*/
data->hdr.type = KNOT_MSG_DATA;
data->sensor_id = evt_sensor_id;
evt_sensor_id++;
if (evt_sensor_id > last_id)
evt_sensor_id = 0;
// Nothing changed
if (comparison == 0)
return -1;
return 0;
}
int8_t knot_thing_init(const char *thing_name)
{
reset_data_items();
return knot_thing_protocol_init(thing_name, data_item_read,
data_item_write, knot_thing_create_schema,
knot_thing_config_data_item, verify_events);
}