| /* |
| * Copyright (C) 2012 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| #include <errno.h> |
| #include <string.h> |
| #include <stdint.h> |
| |
| #include <keystore/keystore.h> |
| #include <keymaster/softkeymaster.h> |
| |
| #include <hardware/hardware.h> |
| #include <hardware/keymaster0.h> |
| |
| #include <openssl/evp.h> |
| #include <openssl/bio.h> |
| #include <openssl/rsa.h> |
| #include <openssl/err.h> |
| #include <openssl/x509.h> |
| |
| #include <UniquePtr.h> |
| |
| // For debugging |
| // #define LOG_NDEBUG 0 |
| |
| #define LOG_TAG "OpenSSLKeyMaster" |
| #include <cutils/log.h> |
| |
| struct BIGNUM_Delete { |
| void operator()(BIGNUM* p) const { BN_free(p); } |
| }; |
| typedef UniquePtr<BIGNUM, BIGNUM_Delete> Unique_BIGNUM; |
| |
| struct EVP_PKEY_Delete { |
| void operator()(EVP_PKEY* p) const { EVP_PKEY_free(p); } |
| }; |
| typedef UniquePtr<EVP_PKEY, EVP_PKEY_Delete> Unique_EVP_PKEY; |
| |
| struct PKCS8_PRIV_KEY_INFO_Delete { |
| void operator()(PKCS8_PRIV_KEY_INFO* p) const { PKCS8_PRIV_KEY_INFO_free(p); } |
| }; |
| typedef UniquePtr<PKCS8_PRIV_KEY_INFO, PKCS8_PRIV_KEY_INFO_Delete> Unique_PKCS8_PRIV_KEY_INFO; |
| |
| struct DSA_Delete { |
| void operator()(DSA* p) const { DSA_free(p); } |
| }; |
| typedef UniquePtr<DSA, DSA_Delete> Unique_DSA; |
| |
| struct EC_KEY_Delete { |
| void operator()(EC_KEY* p) const { EC_KEY_free(p); } |
| }; |
| typedef UniquePtr<EC_KEY, EC_KEY_Delete> Unique_EC_KEY; |
| |
| struct EC_GROUP_Delete { |
| void operator()(EC_GROUP* p) const { EC_GROUP_free(p); } |
| }; |
| typedef UniquePtr<EC_GROUP, EC_GROUP_Delete> Unique_EC_GROUP; |
| |
| struct RSA_Delete { |
| void operator()(RSA* p) const { RSA_free(p); } |
| }; |
| typedef UniquePtr<RSA, RSA_Delete> Unique_RSA; |
| |
| struct Malloc_Free { |
| void operator()(void* p) const { free(p); } |
| }; |
| |
| typedef UniquePtr<keymaster0_device_t> Unique_keymaster_device_t; |
| |
| /** |
| * Many OpenSSL APIs take ownership of an argument on success but |
| * don't free the argument on failure. This means we need to tell our |
| * scoped pointers when we've transferred ownership, without |
| * triggering a warning by not using the result of release(). |
| */ |
| template <typename T, typename Delete_T> |
| inline void release_because_ownership_transferred(UniquePtr<T, Delete_T>& p) { |
| T* val __attribute__((unused)) = p.release(); |
| } |
| |
| /* |
| * Checks this thread's OpenSSL error queue and logs if |
| * necessary. |
| */ |
| static void logOpenSSLError(const char* location) { |
| int error = ERR_get_error(); |
| |
| if (error != 0) { |
| char message[256]; |
| ERR_error_string_n(error, message, sizeof(message)); |
| ALOGE("OpenSSL error in %s %d: %s", location, error, message); |
| } |
| |
| ERR_clear_error(); |
| ERR_remove_thread_state(NULL); |
| } |
| |
| static int wrap_key(EVP_PKEY* pkey, int type, uint8_t** keyBlob, size_t* keyBlobLength) { |
| /* |
| * Find the length of each size. Public key is not needed anymore |
| * but must be kept for alignment purposes. |
| */ |
| int publicLen = 0; |
| int privateLen = i2d_PrivateKey(pkey, NULL); |
| |
| if (privateLen <= 0) { |
| ALOGE("private key size was too big"); |
| return -1; |
| } |
| |
| /* int type + int size + private key data + int size + public key data */ |
| *keyBlobLength = get_softkey_header_size() + sizeof(type) + sizeof(publicLen) + privateLen + |
| sizeof(privateLen) + publicLen; |
| |
| // derData will be returned to the caller, so allocate it with malloc. |
| UniquePtr<unsigned char, Malloc_Free> derData( |
| static_cast<unsigned char*>(malloc(*keyBlobLength))); |
| if (derData.get() == NULL) { |
| ALOGE("could not allocate memory for key blob"); |
| return -1; |
| } |
| unsigned char* p = derData.get(); |
| |
| /* Write the magic value for software keys. */ |
| p = add_softkey_header(p, *keyBlobLength); |
| |
| /* Write key type to allocated buffer */ |
| for (int i = sizeof(type) - 1; i >= 0; i--) { |
| *p++ = (type >> (8 * i)) & 0xFF; |
| } |
| |
| /* Write public key to allocated buffer */ |
| for (int i = sizeof(publicLen) - 1; i >= 0; i--) { |
| *p++ = (publicLen >> (8 * i)) & 0xFF; |
| } |
| |
| /* Write private key to allocated buffer */ |
| for (int i = sizeof(privateLen) - 1; i >= 0; i--) { |
| *p++ = (privateLen >> (8 * i)) & 0xFF; |
| } |
| if (i2d_PrivateKey(pkey, &p) != privateLen) { |
| logOpenSSLError("wrap_key"); |
| return -1; |
| } |
| |
| *keyBlob = derData.release(); |
| |
| return 0; |
| } |
| |
| static EVP_PKEY* unwrap_key(const uint8_t* keyBlob, const size_t keyBlobLength) { |
| long publicLen = 0; |
| long privateLen = 0; |
| const uint8_t* p = keyBlob; |
| const uint8_t* const end = keyBlob + keyBlobLength; |
| |
| if (keyBlob == NULL) { |
| ALOGE("supplied key blob was NULL"); |
| return NULL; |
| } |
| |
| int type = 0; |
| if (keyBlobLength < (get_softkey_header_size() + sizeof(type) + sizeof(publicLen) + 1 + |
| sizeof(privateLen) + 1)) { |
| ALOGE("key blob appears to be truncated"); |
| return NULL; |
| } |
| |
| if (!is_softkey(p, keyBlobLength)) { |
| ALOGE("cannot read key; it was not made by this keymaster"); |
| return NULL; |
| } |
| p += get_softkey_header_size(); |
| |
| for (size_t i = 0; i < sizeof(type); i++) { |
| type = (type << 8) | *p++; |
| } |
| |
| for (size_t i = 0; i < sizeof(type); i++) { |
| publicLen = (publicLen << 8) | *p++; |
| } |
| if (p + publicLen > end) { |
| ALOGE("public key length encoding error: size=%ld, end=%td", publicLen, end - p); |
| return NULL; |
| } |
| |
| p += publicLen; |
| if (end - p < 2) { |
| ALOGE("private key truncated"); |
| return NULL; |
| } |
| for (size_t i = 0; i < sizeof(type); i++) { |
| privateLen = (privateLen << 8) | *p++; |
| } |
| if (p + privateLen > end) { |
| ALOGE("private key length encoding error: size=%ld, end=%td", privateLen, end - p); |
| return NULL; |
| } |
| |
| Unique_EVP_PKEY pkey(EVP_PKEY_new()); |
| if (pkey.get() == NULL) { |
| logOpenSSLError("unwrap_key"); |
| return NULL; |
| } |
| EVP_PKEY* tmp = pkey.get(); |
| |
| if (d2i_PrivateKey(type, &tmp, &p, privateLen) == NULL) { |
| logOpenSSLError("unwrap_key"); |
| return NULL; |
| } |
| |
| return pkey.release(); |
| } |
| |
| static int generate_dsa_keypair(EVP_PKEY* pkey, const keymaster_dsa_keygen_params_t* dsa_params) { |
| if (dsa_params->key_size < 512) { |
| ALOGI("Requested DSA key size is too small (<512)"); |
| return -1; |
| } |
| |
| Unique_DSA dsa(DSA_new()); |
| |
| if (dsa_params->generator_len == 0 || dsa_params->prime_p_len == 0 || |
| dsa_params->prime_q_len == 0 || dsa_params->generator == NULL || |
| dsa_params->prime_p == NULL || dsa_params->prime_q == NULL) { |
| if (DSA_generate_parameters_ex(dsa.get(), dsa_params->key_size, NULL, 0, NULL, NULL, |
| NULL) != 1) { |
| logOpenSSLError("generate_dsa_keypair"); |
| return -1; |
| } |
| } else { |
| dsa->g = BN_bin2bn(dsa_params->generator, dsa_params->generator_len, NULL); |
| if (dsa->g == NULL) { |
| logOpenSSLError("generate_dsa_keypair"); |
| return -1; |
| } |
| |
| dsa->p = BN_bin2bn(dsa_params->prime_p, dsa_params->prime_p_len, NULL); |
| if (dsa->p == NULL) { |
| logOpenSSLError("generate_dsa_keypair"); |
| return -1; |
| } |
| |
| dsa->q = BN_bin2bn(dsa_params->prime_q, dsa_params->prime_q_len, NULL); |
| if (dsa->q == NULL) { |
| logOpenSSLError("generate_dsa_keypair"); |
| return -1; |
| } |
| } |
| |
| if (DSA_generate_key(dsa.get()) != 1) { |
| logOpenSSLError("generate_dsa_keypair"); |
| return -1; |
| } |
| |
| if (EVP_PKEY_assign_DSA(pkey, dsa.get()) == 0) { |
| logOpenSSLError("generate_dsa_keypair"); |
| return -1; |
| } |
| release_because_ownership_transferred(dsa); |
| |
| return 0; |
| } |
| |
| static int generate_ec_keypair(EVP_PKEY* pkey, const keymaster_ec_keygen_params_t* ec_params) { |
| Unique_EC_GROUP group; |
| switch (ec_params->field_size) { |
| case 224: |
| group.reset(EC_GROUP_new_by_curve_name(NID_secp224r1)); |
| break; |
| case 256: |
| group.reset(EC_GROUP_new_by_curve_name(NID_X9_62_prime256v1)); |
| break; |
| case 384: |
| group.reset(EC_GROUP_new_by_curve_name(NID_secp384r1)); |
| break; |
| case 521: |
| group.reset(EC_GROUP_new_by_curve_name(NID_secp521r1)); |
| break; |
| default: |
| break; |
| } |
| |
| if (group.get() == NULL) { |
| logOpenSSLError("generate_ec_keypair"); |
| return -1; |
| } |
| |
| #if !defined(OPENSSL_IS_BORINGSSL) |
| EC_GROUP_set_point_conversion_form(group.get(), POINT_CONVERSION_UNCOMPRESSED); |
| EC_GROUP_set_asn1_flag(group.get(), OPENSSL_EC_NAMED_CURVE); |
| #endif |
| |
| /* initialize EC key */ |
| Unique_EC_KEY eckey(EC_KEY_new()); |
| if (eckey.get() == NULL) { |
| logOpenSSLError("generate_ec_keypair"); |
| return -1; |
| } |
| |
| if (EC_KEY_set_group(eckey.get(), group.get()) != 1) { |
| logOpenSSLError("generate_ec_keypair"); |
| return -1; |
| } |
| |
| if (EC_KEY_generate_key(eckey.get()) != 1 || EC_KEY_check_key(eckey.get()) < 0) { |
| logOpenSSLError("generate_ec_keypair"); |
| return -1; |
| } |
| |
| if (EVP_PKEY_assign_EC_KEY(pkey, eckey.get()) == 0) { |
| logOpenSSLError("generate_ec_keypair"); |
| return -1; |
| } |
| release_because_ownership_transferred(eckey); |
| |
| return 0; |
| } |
| |
| static int generate_rsa_keypair(EVP_PKEY* pkey, const keymaster_rsa_keygen_params_t* rsa_params) { |
| Unique_BIGNUM bn(BN_new()); |
| if (bn.get() == NULL) { |
| logOpenSSLError("generate_rsa_keypair"); |
| return -1; |
| } |
| |
| if (BN_set_word(bn.get(), rsa_params->public_exponent) == 0) { |
| logOpenSSLError("generate_rsa_keypair"); |
| return -1; |
| } |
| |
| /* initialize RSA */ |
| Unique_RSA rsa(RSA_new()); |
| if (rsa.get() == NULL) { |
| logOpenSSLError("generate_rsa_keypair"); |
| return -1; |
| } |
| |
| if (!RSA_generate_key_ex(rsa.get(), rsa_params->modulus_size, bn.get(), NULL) || |
| RSA_check_key(rsa.get()) < 0) { |
| logOpenSSLError("generate_rsa_keypair"); |
| return -1; |
| } |
| |
| if (EVP_PKEY_assign_RSA(pkey, rsa.get()) == 0) { |
| logOpenSSLError("generate_rsa_keypair"); |
| return -1; |
| } |
| release_because_ownership_transferred(rsa); |
| |
| return 0; |
| } |
| |
| __attribute__((visibility("default"))) int openssl_generate_keypair( |
| const keymaster0_device_t*, const keymaster_keypair_t key_type, const void* key_params, |
| uint8_t** keyBlob, size_t* keyBlobLength) { |
| Unique_EVP_PKEY pkey(EVP_PKEY_new()); |
| if (pkey.get() == NULL) { |
| logOpenSSLError("openssl_generate_keypair"); |
| return -1; |
| } |
| |
| if (key_params == NULL) { |
| ALOGW("key_params == null"); |
| return -1; |
| } else if (key_type == TYPE_DSA) { |
| const keymaster_dsa_keygen_params_t* dsa_params = |
| (const keymaster_dsa_keygen_params_t*)key_params; |
| generate_dsa_keypair(pkey.get(), dsa_params); |
| } else if (key_type == TYPE_EC) { |
| const keymaster_ec_keygen_params_t* ec_params = |
| (const keymaster_ec_keygen_params_t*)key_params; |
| generate_ec_keypair(pkey.get(), ec_params); |
| } else if (key_type == TYPE_RSA) { |
| const keymaster_rsa_keygen_params_t* rsa_params = |
| (const keymaster_rsa_keygen_params_t*)key_params; |
| generate_rsa_keypair(pkey.get(), rsa_params); |
| } else { |
| ALOGW("Unsupported key type %d", key_type); |
| return -1; |
| } |
| |
| if (wrap_key(pkey.get(), EVP_PKEY_type(pkey->type), keyBlob, keyBlobLength)) { |
| return -1; |
| } |
| |
| return 0; |
| } |
| |
| __attribute__((visibility("default"))) int openssl_import_keypair(const keymaster0_device_t*, |
| const uint8_t* key, |
| const size_t key_length, |
| uint8_t** key_blob, |
| size_t* key_blob_length) { |
| if (key == NULL) { |
| ALOGW("input key == NULL"); |
| return -1; |
| } else if (key_blob == NULL || key_blob_length == NULL) { |
| ALOGW("output key blob or length == NULL"); |
| return -1; |
| } |
| |
| Unique_PKCS8_PRIV_KEY_INFO pkcs8(d2i_PKCS8_PRIV_KEY_INFO(NULL, &key, key_length)); |
| if (pkcs8.get() == NULL) { |
| logOpenSSLError("openssl_import_keypair"); |
| return -1; |
| } |
| |
| /* assign to EVP */ |
| Unique_EVP_PKEY pkey(EVP_PKCS82PKEY(pkcs8.get())); |
| if (pkey.get() == NULL) { |
| logOpenSSLError("openssl_import_keypair"); |
| return -1; |
| } |
| |
| if (wrap_key(pkey.get(), EVP_PKEY_type(pkey->type), key_blob, key_blob_length)) { |
| return -1; |
| } |
| |
| return 0; |
| } |
| |
| __attribute__((visibility("default"))) int openssl_get_keypair_public(const keymaster0_device_t*, |
| const uint8_t* key_blob, |
| const size_t key_blob_length, |
| uint8_t** x509_data, |
| size_t* x509_data_length) { |
| if (x509_data == NULL || x509_data_length == NULL) { |
| ALOGW("output public key buffer == NULL"); |
| return -1; |
| } |
| |
| Unique_EVP_PKEY pkey(unwrap_key(key_blob, key_blob_length)); |
| if (pkey.get() == NULL) { |
| return -1; |
| } |
| |
| int len = i2d_PUBKEY(pkey.get(), NULL); |
| if (len <= 0) { |
| logOpenSSLError("openssl_get_keypair_public"); |
| return -1; |
| } |
| |
| UniquePtr<uint8_t, Malloc_Free> key(static_cast<uint8_t*>(malloc(len))); |
| if (key.get() == NULL) { |
| ALOGE("Could not allocate memory for public key data"); |
| return -1; |
| } |
| |
| unsigned char* tmp = reinterpret_cast<unsigned char*>(key.get()); |
| if (i2d_PUBKEY(pkey.get(), &tmp) != len) { |
| logOpenSSLError("openssl_get_keypair_public"); |
| return -1; |
| } |
| |
| ALOGV("Length of x509 data is %d", len); |
| *x509_data_length = len; |
| *x509_data = key.release(); |
| |
| return 0; |
| } |
| |
| static int sign_dsa(EVP_PKEY* pkey, keymaster_dsa_sign_params_t* sign_params, const uint8_t* data, |
| const size_t dataLength, uint8_t** signedData, size_t* signedDataLength) { |
| if (sign_params->digest_type != DIGEST_NONE) { |
| ALOGW("Cannot handle digest type %d", sign_params->digest_type); |
| return -1; |
| } |
| |
| Unique_DSA dsa(EVP_PKEY_get1_DSA(pkey)); |
| if (dsa.get() == NULL) { |
| logOpenSSLError("openssl_sign_dsa"); |
| return -1; |
| } |
| |
| unsigned int dsaSize = DSA_size(dsa.get()); |
| UniquePtr<uint8_t, Malloc_Free> signedDataPtr(reinterpret_cast<uint8_t*>(malloc(dsaSize))); |
| if (signedDataPtr.get() == NULL) { |
| logOpenSSLError("openssl_sign_dsa"); |
| return -1; |
| } |
| |
| unsigned char* tmp = reinterpret_cast<unsigned char*>(signedDataPtr.get()); |
| if (DSA_sign(0, data, dataLength, tmp, &dsaSize, dsa.get()) <= 0) { |
| logOpenSSLError("openssl_sign_dsa"); |
| return -1; |
| } |
| |
| *signedDataLength = dsaSize; |
| *signedData = signedDataPtr.release(); |
| |
| return 0; |
| } |
| |
| static int sign_ec(EVP_PKEY* pkey, keymaster_ec_sign_params_t* sign_params, const uint8_t* data, |
| const size_t dataLength, uint8_t** signedData, size_t* signedDataLength) { |
| if (sign_params->digest_type != DIGEST_NONE) { |
| ALOGW("Cannot handle digest type %d", sign_params->digest_type); |
| return -1; |
| } |
| |
| Unique_EC_KEY eckey(EVP_PKEY_get1_EC_KEY(pkey)); |
| if (eckey.get() == NULL) { |
| logOpenSSLError("openssl_sign_ec"); |
| return -1; |
| } |
| |
| unsigned int ecdsaSize = ECDSA_size(eckey.get()); |
| UniquePtr<uint8_t, Malloc_Free> signedDataPtr(reinterpret_cast<uint8_t*>(malloc(ecdsaSize))); |
| if (signedDataPtr.get() == NULL) { |
| logOpenSSLError("openssl_sign_ec"); |
| return -1; |
| } |
| |
| unsigned char* tmp = reinterpret_cast<unsigned char*>(signedDataPtr.get()); |
| if (ECDSA_sign(0, data, dataLength, tmp, &ecdsaSize, eckey.get()) <= 0) { |
| logOpenSSLError("openssl_sign_ec"); |
| return -1; |
| } |
| |
| *signedDataLength = ecdsaSize; |
| *signedData = signedDataPtr.release(); |
| |
| return 0; |
| } |
| |
| static int sign_rsa(EVP_PKEY* pkey, keymaster_rsa_sign_params_t* sign_params, const uint8_t* data, |
| const size_t dataLength, uint8_t** signedData, size_t* signedDataLength) { |
| if (sign_params->digest_type != DIGEST_NONE) { |
| ALOGW("Cannot handle digest type %d", sign_params->digest_type); |
| return -1; |
| } else if (sign_params->padding_type != PADDING_NONE) { |
| ALOGW("Cannot handle padding type %d", sign_params->padding_type); |
| return -1; |
| } |
| |
| Unique_RSA rsa(EVP_PKEY_get1_RSA(pkey)); |
| if (rsa.get() == NULL) { |
| logOpenSSLError("openssl_sign_rsa"); |
| return -1; |
| } |
| |
| UniquePtr<uint8_t, Malloc_Free> signedDataPtr(reinterpret_cast<uint8_t*>(malloc(dataLength))); |
| if (signedDataPtr.get() == NULL) { |
| logOpenSSLError("openssl_sign_rsa"); |
| return -1; |
| } |
| |
| unsigned char* tmp = reinterpret_cast<unsigned char*>(signedDataPtr.get()); |
| if (RSA_private_encrypt(dataLength, data, tmp, rsa.get(), RSA_NO_PADDING) <= 0) { |
| logOpenSSLError("openssl_sign_rsa"); |
| return -1; |
| } |
| |
| *signedDataLength = dataLength; |
| *signedData = signedDataPtr.release(); |
| |
| return 0; |
| } |
| |
| __attribute__((visibility("default"))) int openssl_sign_data( |
| const keymaster0_device_t*, const void* params, const uint8_t* keyBlob, |
| const size_t keyBlobLength, const uint8_t* data, const size_t dataLength, uint8_t** signedData, |
| size_t* signedDataLength) { |
| if (data == NULL) { |
| ALOGW("input data to sign == NULL"); |
| return -1; |
| } else if (signedData == NULL || signedDataLength == NULL) { |
| ALOGW("output signature buffer == NULL"); |
| return -1; |
| } |
| |
| Unique_EVP_PKEY pkey(unwrap_key(keyBlob, keyBlobLength)); |
| if (pkey.get() == NULL) { |
| return -1; |
| } |
| |
| int type = EVP_PKEY_type(pkey->type); |
| if (type == EVP_PKEY_DSA) { |
| const keymaster_dsa_sign_params_t* sign_params = |
| reinterpret_cast<const keymaster_dsa_sign_params_t*>(params); |
| return sign_dsa(pkey.get(), const_cast<keymaster_dsa_sign_params_t*>(sign_params), data, |
| dataLength, signedData, signedDataLength); |
| } else if (type == EVP_PKEY_EC) { |
| const keymaster_ec_sign_params_t* sign_params = |
| reinterpret_cast<const keymaster_ec_sign_params_t*>(params); |
| return sign_ec(pkey.get(), const_cast<keymaster_ec_sign_params_t*>(sign_params), data, |
| dataLength, signedData, signedDataLength); |
| } else if (type == EVP_PKEY_RSA) { |
| const keymaster_rsa_sign_params_t* sign_params = |
| reinterpret_cast<const keymaster_rsa_sign_params_t*>(params); |
| return sign_rsa(pkey.get(), const_cast<keymaster_rsa_sign_params_t*>(sign_params), data, |
| dataLength, signedData, signedDataLength); |
| } else { |
| ALOGW("Unsupported key type"); |
| return -1; |
| } |
| } |
| |
| static int verify_dsa(EVP_PKEY* pkey, keymaster_dsa_sign_params_t* sign_params, |
| const uint8_t* signedData, const size_t signedDataLength, |
| const uint8_t* signature, const size_t signatureLength) { |
| if (sign_params->digest_type != DIGEST_NONE) { |
| ALOGW("Cannot handle digest type %d", sign_params->digest_type); |
| return -1; |
| } |
| |
| Unique_DSA dsa(EVP_PKEY_get1_DSA(pkey)); |
| if (dsa.get() == NULL) { |
| logOpenSSLError("openssl_verify_dsa"); |
| return -1; |
| } |
| |
| if (DSA_verify(0, signedData, signedDataLength, signature, signatureLength, dsa.get()) <= 0) { |
| logOpenSSLError("openssl_verify_dsa"); |
| return -1; |
| } |
| |
| return 0; |
| } |
| |
| static int verify_ec(EVP_PKEY* pkey, keymaster_ec_sign_params_t* sign_params, |
| const uint8_t* signedData, const size_t signedDataLength, |
| const uint8_t* signature, const size_t signatureLength) { |
| if (sign_params->digest_type != DIGEST_NONE) { |
| ALOGW("Cannot handle digest type %d", sign_params->digest_type); |
| return -1; |
| } |
| |
| Unique_EC_KEY eckey(EVP_PKEY_get1_EC_KEY(pkey)); |
| if (eckey.get() == NULL) { |
| logOpenSSLError("openssl_verify_ec"); |
| return -1; |
| } |
| |
| if (ECDSA_verify(0, signedData, signedDataLength, signature, signatureLength, eckey.get()) <= |
| 0) { |
| logOpenSSLError("openssl_verify_ec"); |
| return -1; |
| } |
| |
| return 0; |
| } |
| |
| static int verify_rsa(EVP_PKEY* pkey, keymaster_rsa_sign_params_t* sign_params, |
| const uint8_t* signedData, const size_t signedDataLength, |
| const uint8_t* signature, const size_t signatureLength) { |
| if (sign_params->digest_type != DIGEST_NONE) { |
| ALOGW("Cannot handle digest type %d", sign_params->digest_type); |
| return -1; |
| } else if (sign_params->padding_type != PADDING_NONE) { |
| ALOGW("Cannot handle padding type %d", sign_params->padding_type); |
| return -1; |
| } else if (signatureLength != signedDataLength) { |
| ALOGW("signed data length must be signature length"); |
| return -1; |
| } |
| |
| Unique_RSA rsa(EVP_PKEY_get1_RSA(pkey)); |
| if (rsa.get() == NULL) { |
| logOpenSSLError("openssl_verify_data"); |
| return -1; |
| } |
| |
| UniquePtr<uint8_t[]> dataPtr(new uint8_t[signedDataLength]); |
| if (dataPtr.get() == NULL) { |
| logOpenSSLError("openssl_verify_data"); |
| return -1; |
| } |
| |
| unsigned char* tmp = reinterpret_cast<unsigned char*>(dataPtr.get()); |
| if (!RSA_public_decrypt(signatureLength, signature, tmp, rsa.get(), RSA_NO_PADDING)) { |
| logOpenSSLError("openssl_verify_data"); |
| return -1; |
| } |
| |
| int result = 0; |
| for (size_t i = 0; i < signedDataLength; i++) { |
| result |= tmp[i] ^ signedData[i]; |
| } |
| |
| return result == 0 ? 0 : -1; |
| } |
| |
| __attribute__((visibility("default"))) int openssl_verify_data( |
| const keymaster0_device_t*, const void* params, const uint8_t* keyBlob, |
| const size_t keyBlobLength, const uint8_t* signedData, const size_t signedDataLength, |
| const uint8_t* signature, const size_t signatureLength) { |
| if (signedData == NULL || signature == NULL) { |
| ALOGW("data or signature buffers == NULL"); |
| return -1; |
| } |
| |
| Unique_EVP_PKEY pkey(unwrap_key(keyBlob, keyBlobLength)); |
| if (pkey.get() == NULL) { |
| return -1; |
| } |
| |
| int type = EVP_PKEY_type(pkey->type); |
| if (type == EVP_PKEY_DSA) { |
| const keymaster_dsa_sign_params_t* sign_params = |
| reinterpret_cast<const keymaster_dsa_sign_params_t*>(params); |
| return verify_dsa(pkey.get(), const_cast<keymaster_dsa_sign_params_t*>(sign_params), |
| signedData, signedDataLength, signature, signatureLength); |
| } else if (type == EVP_PKEY_RSA) { |
| const keymaster_rsa_sign_params_t* sign_params = |
| reinterpret_cast<const keymaster_rsa_sign_params_t*>(params); |
| return verify_rsa(pkey.get(), const_cast<keymaster_rsa_sign_params_t*>(sign_params), |
| signedData, signedDataLength, signature, signatureLength); |
| } else if (type == EVP_PKEY_EC) { |
| const keymaster_ec_sign_params_t* sign_params = |
| reinterpret_cast<const keymaster_ec_sign_params_t*>(params); |
| return verify_ec(pkey.get(), const_cast<keymaster_ec_sign_params_t*>(sign_params), |
| signedData, signedDataLength, signature, signatureLength); |
| } else { |
| ALOGW("Unsupported key type %d", type); |
| return -1; |
| } |
| } |
| |
| /* Close an opened OpenSSL instance */ |
| static int openssl_close(hw_device_t* dev) { |
| delete dev; |
| return 0; |
| } |
| |
| /* |
| * Generic device handling |
| */ |
| __attribute__((visibility("default"))) int openssl_open(const hw_module_t* module, const char* name, |
| hw_device_t** device) { |
| if (strcmp(name, KEYSTORE_KEYMASTER) != 0) |
| return -EINVAL; |
| |
| Unique_keymaster_device_t dev(new keymaster0_device_t); |
| if (dev.get() == NULL) |
| return -ENOMEM; |
| |
| dev->common.tag = HARDWARE_DEVICE_TAG; |
| dev->common.version = 1; |
| dev->common.module = (struct hw_module_t*)module; |
| dev->common.close = openssl_close; |
| |
| dev->flags = KEYMASTER_SOFTWARE_ONLY; |
| |
| dev->generate_keypair = openssl_generate_keypair; |
| dev->import_keypair = openssl_import_keypair; |
| dev->get_keypair_public = openssl_get_keypair_public; |
| dev->delete_keypair = NULL; |
| dev->delete_all = NULL; |
| dev->sign_data = openssl_sign_data; |
| dev->verify_data = openssl_verify_data; |
| |
| ERR_load_crypto_strings(); |
| ERR_load_BIO_strings(); |
| |
| *device = reinterpret_cast<hw_device_t*>(dev.release()); |
| |
| return 0; |
| } |
| |
| static struct hw_module_methods_t keystore_module_methods = { |
| .open = openssl_open, |
| }; |
| |
| struct keystore_module softkeymaster_module __attribute__((visibility("default"))) = { |
| .common = |
| { |
| .tag = HARDWARE_MODULE_TAG, |
| .module_api_version = KEYMASTER_MODULE_API_VERSION_0_2, |
| .hal_api_version = HARDWARE_HAL_API_VERSION, |
| .id = KEYSTORE_HARDWARE_MODULE_ID, |
| .name = "Keymaster OpenSSL HAL", |
| .author = "The Android Open Source Project", |
| .methods = &keystore_module_methods, |
| .dso = 0, |
| .reserved = {}, |
| }, |
| }; |