| /* |
| * Copyright (C) 2010 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include <inttypes.h> |
| #include <math.h> |
| #include <stdint.h> |
| #include <sys/types.h> |
| #include <sys/socket.h> |
| |
| #include <cutils/properties.h> |
| |
| #include <utils/SortedVector.h> |
| #include <utils/KeyedVector.h> |
| #include <utils/threads.h> |
| #include <utils/Atomic.h> |
| #include <utils/Errors.h> |
| #include <utils/RefBase.h> |
| #include <utils/Singleton.h> |
| #include <utils/String16.h> |
| |
| #include <binder/AppOpsManager.h> |
| #include <binder/BinderService.h> |
| #include <binder/IServiceManager.h> |
| #include <binder/PermissionCache.h> |
| |
| #include <gui/ISensorServer.h> |
| #include <gui/ISensorEventConnection.h> |
| #include <gui/SensorEventQueue.h> |
| |
| #include <hardware/sensors.h> |
| #include <hardware_legacy/power.h> |
| |
| #include "BatteryService.h" |
| #include "CorrectedGyroSensor.h" |
| #include "GravitySensor.h" |
| #include "LinearAccelerationSensor.h" |
| #include "OrientationSensor.h" |
| #include "RotationVectorSensor.h" |
| #include "SensorFusion.h" |
| #include "SensorService.h" |
| |
| namespace android { |
| // --------------------------------------------------------------------------- |
| |
| /* |
| * Notes: |
| * |
| * - what about a gyro-corrected magnetic-field sensor? |
| * - run mag sensor from time to time to force calibration |
| * - gravity sensor length is wrong (=> drift in linear-acc sensor) |
| * |
| */ |
| |
| const char* SensorService::WAKE_LOCK_NAME = "SensorService_wakelock"; |
| // Permissions. |
| static const String16 sDump("android.permission.DUMP"); |
| |
| SensorService::SensorService() |
| : mInitCheck(NO_INIT), mSocketBufferSize(SOCKET_BUFFER_SIZE_NON_BATCHED), |
| mWakeLockAcquired(false) |
| { |
| } |
| |
| void SensorService::onFirstRef() |
| { |
| ALOGD("nuSensorService starting..."); |
| SensorDevice& dev(SensorDevice::getInstance()); |
| |
| if (dev.initCheck() == NO_ERROR) { |
| sensor_t const* list; |
| ssize_t count = dev.getSensorList(&list); |
| if (count > 0) { |
| ssize_t orientationIndex = -1; |
| bool hasGyro = false, hasAccel = false, hasMag = false; |
| uint32_t virtualSensorsNeeds = |
| (1<<SENSOR_TYPE_GRAVITY) | |
| (1<<SENSOR_TYPE_LINEAR_ACCELERATION) | |
| (1<<SENSOR_TYPE_ROTATION_VECTOR); |
| |
| mLastEventSeen.setCapacity(count); |
| for (ssize_t i=0 ; i<count ; i++) { |
| registerSensor( new HardwareSensor(list[i]) ); |
| switch (list[i].type) { |
| case SENSOR_TYPE_ACCELEROMETER: |
| hasAccel = true; |
| break; |
| case SENSOR_TYPE_MAGNETIC_FIELD: |
| hasMag = true; |
| break; |
| case SENSOR_TYPE_ORIENTATION: |
| orientationIndex = i; |
| break; |
| case SENSOR_TYPE_GYROSCOPE: |
| case SENSOR_TYPE_GYROSCOPE_UNCALIBRATED: |
| hasGyro = true; |
| break; |
| case SENSOR_TYPE_GRAVITY: |
| case SENSOR_TYPE_LINEAR_ACCELERATION: |
| case SENSOR_TYPE_ROTATION_VECTOR: |
| virtualSensorsNeeds &= ~(1<<list[i].type); |
| break; |
| } |
| } |
| |
| // it's safe to instantiate the SensorFusion object here |
| // (it wants to be instantiated after h/w sensors have been |
| // registered) |
| const SensorFusion& fusion(SensorFusion::getInstance()); |
| |
| // build the sensor list returned to users |
| mUserSensorList = mSensorList; |
| |
| if (hasGyro && hasAccel && hasMag) { |
| Sensor aSensor; |
| |
| // Add Android virtual sensors if they're not already |
| // available in the HAL |
| |
| aSensor = registerVirtualSensor( new RotationVectorSensor() ); |
| if (virtualSensorsNeeds & (1<<SENSOR_TYPE_ROTATION_VECTOR)) { |
| mUserSensorList.add(aSensor); |
| } |
| |
| aSensor = registerVirtualSensor( new GravitySensor(list, count) ); |
| if (virtualSensorsNeeds & (1<<SENSOR_TYPE_GRAVITY)) { |
| mUserSensorList.add(aSensor); |
| } |
| |
| aSensor = registerVirtualSensor( new LinearAccelerationSensor(list, count) ); |
| if (virtualSensorsNeeds & (1<<SENSOR_TYPE_LINEAR_ACCELERATION)) { |
| mUserSensorList.add(aSensor); |
| } |
| |
| aSensor = registerVirtualSensor( new OrientationSensor() ); |
| if (virtualSensorsNeeds & (1<<SENSOR_TYPE_ROTATION_VECTOR)) { |
| if (orientationIndex == -1) { |
| // some sensor HALs don't provide an orientation sensor. |
| mUserSensorList.add(aSensor); |
| } |
| } |
| |
| // virtual debugging sensors are not added to mUserSensorList |
| registerVirtualSensor( new CorrectedGyroSensor(list, count) ); |
| registerVirtualSensor( new GyroDriftSensor() ); |
| } |
| |
| // debugging sensor list |
| mUserSensorListDebug = mSensorList; |
| |
| // Check if the device really supports batching by looking at the FIFO event |
| // counts for each sensor. |
| bool batchingSupported = false; |
| for (size_t i = 0; i < mSensorList.size(); ++i) { |
| if (mSensorList[i].getFifoMaxEventCount() > 0) { |
| batchingSupported = true; |
| break; |
| } |
| } |
| |
| if (batchingSupported) { |
| // Increase socket buffer size to a max of 100 KB for batching capabilities. |
| mSocketBufferSize = MAX_SOCKET_BUFFER_SIZE_BATCHED; |
| } else { |
| mSocketBufferSize = SOCKET_BUFFER_SIZE_NON_BATCHED; |
| } |
| |
| // Compare the socketBufferSize value against the system limits and limit |
| // it to maxSystemSocketBufferSize if necessary. |
| FILE *fp = fopen("/proc/sys/net/core/wmem_max", "r"); |
| char line[128]; |
| if (fp != NULL && fgets(line, sizeof(line), fp) != NULL) { |
| line[sizeof(line) - 1] = '\0'; |
| size_t maxSystemSocketBufferSize; |
| sscanf(line, "%zu", &maxSystemSocketBufferSize); |
| if (mSocketBufferSize > maxSystemSocketBufferSize) { |
| mSocketBufferSize = maxSystemSocketBufferSize; |
| } |
| } |
| if (fp) { |
| fclose(fp); |
| } |
| |
| mWakeLockAcquired = false; |
| mLooper = new Looper(false); |
| const size_t minBufferSize = SensorEventQueue::MAX_RECEIVE_BUFFER_EVENT_COUNT; |
| mSensorEventBuffer = new sensors_event_t[minBufferSize]; |
| mSensorEventScratch = new sensors_event_t[minBufferSize]; |
| mMapFlushEventsToConnections = new SensorEventConnection const * [minBufferSize]; |
| mCurrentOperatingMode = NORMAL; |
| |
| mNextSensorRegIndex = 0; |
| for (int i = 0; i < SENSOR_REGISTRATIONS_BUF_SIZE; ++i) { |
| mLastNSensorRegistrations.push(); |
| } |
| |
| mInitCheck = NO_ERROR; |
| mAckReceiver = new SensorEventAckReceiver(this); |
| mAckReceiver->run("SensorEventAckReceiver", PRIORITY_URGENT_DISPLAY); |
| run("SensorService", PRIORITY_URGENT_DISPLAY); |
| } |
| } |
| } |
| |
| Sensor SensorService::registerSensor(SensorInterface* s) |
| { |
| sensors_event_t event; |
| memset(&event, 0, sizeof(event)); |
| |
| const Sensor sensor(s->getSensor()); |
| // add to the sensor list (returned to clients) |
| mSensorList.add(sensor); |
| // add to our handle->SensorInterface mapping |
| mSensorMap.add(sensor.getHandle(), s); |
| // create an entry in the mLastEventSeen array |
| mLastEventSeen.add(sensor.getHandle(), NULL); |
| |
| return sensor; |
| } |
| |
| Sensor SensorService::registerVirtualSensor(SensorInterface* s) |
| { |
| Sensor sensor = registerSensor(s); |
| mVirtualSensorList.add( s ); |
| return sensor; |
| } |
| |
| SensorService::~SensorService() |
| { |
| for (size_t i=0 ; i<mSensorMap.size() ; i++) |
| delete mSensorMap.valueAt(i); |
| } |
| |
| status_t SensorService::dump(int fd, const Vector<String16>& args) |
| { |
| String8 result; |
| if (!PermissionCache::checkCallingPermission(sDump)) { |
| result.appendFormat("Permission Denial: " |
| "can't dump SensorService from pid=%d, uid=%d\n", |
| IPCThreadState::self()->getCallingPid(), |
| IPCThreadState::self()->getCallingUid()); |
| } else { |
| if (args.size() > 2) { |
| return INVALID_OPERATION; |
| } |
| Mutex::Autolock _l(mLock); |
| SensorDevice& dev(SensorDevice::getInstance()); |
| if (args.size() == 2 && args[0] == String16("restrict")) { |
| // If already in restricted mode. Ignore. |
| if (mCurrentOperatingMode == RESTRICTED) { |
| return status_t(NO_ERROR); |
| } |
| // If in any mode other than normal, ignore. |
| if (mCurrentOperatingMode != NORMAL) { |
| return INVALID_OPERATION; |
| } |
| mCurrentOperatingMode = RESTRICTED; |
| dev.disableAllSensors(); |
| // Clear all pending flush connections for all active sensors. If one of the active |
| // connections has called flush() and the underlying sensor has been disabled before a |
| // flush complete event is returned, we need to remove the connection from this queue. |
| for (size_t i=0 ; i< mActiveSensors.size(); ++i) { |
| mActiveSensors.valueAt(i)->clearAllPendingFlushConnections(); |
| } |
| mWhiteListedPackage.setTo(String8(args[1])); |
| return status_t(NO_ERROR); |
| } else if (args.size() == 1 && args[0] == String16("enable")) { |
| // If currently in restricted mode, reset back to NORMAL mode else ignore. |
| if (mCurrentOperatingMode == RESTRICTED) { |
| mCurrentOperatingMode = NORMAL; |
| dev.enableAllSensors(); |
| } |
| if (mCurrentOperatingMode == DATA_INJECTION) { |
| resetToNormalModeLocked(); |
| } |
| mWhiteListedPackage.clear(); |
| return status_t(NO_ERROR); |
| } else if (args.size() == 2 && args[0] == String16("data_injection")) { |
| if (mCurrentOperatingMode == NORMAL) { |
| dev.disableAllSensors(); |
| status_t err = dev.setMode(DATA_INJECTION); |
| if (err == NO_ERROR) { |
| mCurrentOperatingMode = DATA_INJECTION; |
| } else { |
| // Re-enable sensors. |
| dev.enableAllSensors(); |
| } |
| mWhiteListedPackage.setTo(String8(args[1])); |
| return NO_ERROR; |
| } else if (mCurrentOperatingMode == DATA_INJECTION) { |
| // Already in DATA_INJECTION mode. Treat this as a no_op. |
| return NO_ERROR; |
| } else { |
| // Transition to data injection mode supported only from NORMAL mode. |
| return INVALID_OPERATION; |
| } |
| } else if (mSensorList.size() == 0) { |
| result.append("No Sensors on the device\n"); |
| } else { |
| // Default dump the sensor list and debugging information. |
| result.append("Sensor List:\n"); |
| for (size_t i=0 ; i<mSensorList.size() ; i++) { |
| const Sensor& s(mSensorList[i]); |
| result.appendFormat( |
| "%-15s| %-10s| version=%d |%-20s| 0x%08x | \"%s\" | type=%d |", |
| s.getName().string(), |
| s.getVendor().string(), |
| s.getVersion(), |
| s.getStringType().string(), |
| s.getHandle(), |
| s.getRequiredPermission().string(), |
| s.getType()); |
| |
| const int reportingMode = s.getReportingMode(); |
| if (reportingMode == AREPORTING_MODE_CONTINUOUS) { |
| result.append(" continuous | "); |
| } else if (reportingMode == AREPORTING_MODE_ON_CHANGE) { |
| result.append(" on-change | "); |
| } else if (reportingMode == AREPORTING_MODE_ONE_SHOT) { |
| result.append(" one-shot | "); |
| } else { |
| result.append(" special-trigger | "); |
| } |
| |
| if (s.getMaxDelay() > 0) { |
| result.appendFormat("minRate=%.2fHz | ", 1e6f / s.getMaxDelay()); |
| } else { |
| result.appendFormat("maxDelay=%dus |", s.getMaxDelay()); |
| } |
| |
| if (s.getMinDelay() > 0) { |
| result.appendFormat("maxRate=%.2fHz | ", 1e6f / s.getMinDelay()); |
| } else { |
| result.appendFormat("minDelay=%dus |", s.getMinDelay()); |
| } |
| |
| if (s.getFifoMaxEventCount() > 0) { |
| result.appendFormat("FifoMax=%d events | ", |
| s.getFifoMaxEventCount()); |
| } else { |
| result.append("no batching | "); |
| } |
| |
| if (s.isWakeUpSensor()) { |
| result.appendFormat("wakeUp | "); |
| } else { |
| result.appendFormat("non-wakeUp | "); |
| } |
| |
| result.appendFormat("%.4f mA | ", s.getPowerUsage()); |
| |
| int bufIndex = mLastEventSeen.indexOfKey(s.getHandle()); |
| if (bufIndex >= 0) { |
| const CircularBuffer* buf = mLastEventSeen.valueAt(bufIndex); |
| if (buf != NULL && s.getRequiredPermission().isEmpty()) { |
| buf->printBuffer(result); |
| } else { |
| result.append("last=<> \n"); |
| } |
| } |
| result.append("\n"); |
| } |
| SensorFusion::getInstance().dump(result); |
| SensorDevice::getInstance().dump(result); |
| |
| result.append("Active sensors:\n"); |
| for (size_t i=0 ; i<mActiveSensors.size() ; i++) { |
| int handle = mActiveSensors.keyAt(i); |
| result.appendFormat("%s (handle=0x%08x, connections=%zu)\n", |
| getSensorName(handle).string(), |
| handle, |
| mActiveSensors.valueAt(i)->getNumConnections()); |
| } |
| |
| result.appendFormat("Socket Buffer size = %d events\n", |
| mSocketBufferSize/sizeof(sensors_event_t)); |
| result.appendFormat("WakeLock Status: %s \n", mWakeLockAcquired ? "acquired" : |
| "not held"); |
| result.appendFormat("Mode :"); |
| switch(mCurrentOperatingMode) { |
| case NORMAL: |
| result.appendFormat(" NORMAL\n"); |
| break; |
| case RESTRICTED: |
| result.appendFormat(" RESTRICTED : %s\n", mWhiteListedPackage.string()); |
| break; |
| case DATA_INJECTION: |
| result.appendFormat(" DATA_INJECTION : %s\n", mWhiteListedPackage.string()); |
| } |
| result.appendFormat("%zd active connections\n", mActiveConnections.size()); |
| |
| for (size_t i=0 ; i < mActiveConnections.size() ; i++) { |
| sp<SensorEventConnection> connection(mActiveConnections[i].promote()); |
| if (connection != 0) { |
| result.appendFormat("Connection Number: %zu \n", i); |
| connection->dump(result); |
| } |
| } |
| |
| result.appendFormat("Previous Registrations:\n"); |
| // Log in the reverse chronological order. |
| int currentIndex = (mNextSensorRegIndex - 1 + SENSOR_REGISTRATIONS_BUF_SIZE) % |
| SENSOR_REGISTRATIONS_BUF_SIZE; |
| const int startIndex = currentIndex; |
| do { |
| const SensorRegistrationInfo& reg_info = mLastNSensorRegistrations[currentIndex]; |
| if (SensorRegistrationInfo::isSentinel(reg_info)) { |
| // Ignore sentinel, proceed to next item. |
| currentIndex = (currentIndex - 1 + SENSOR_REGISTRATIONS_BUF_SIZE) % |
| SENSOR_REGISTRATIONS_BUF_SIZE; |
| continue; |
| } |
| if (reg_info.mActivated) { |
| result.appendFormat("%02d:%02d:%02d activated package=%s handle=0x%08x " |
| "samplingRate=%dus maxReportLatency=%dus\n", |
| reg_info.mHour, reg_info.mMin, reg_info.mSec, |
| reg_info.mPackageName.string(), reg_info.mSensorHandle, |
| reg_info.mSamplingRateUs, reg_info.mMaxReportLatencyUs); |
| } else { |
| result.appendFormat("%02d:%02d:%02d de-activated package=%s handle=0x%08x\n", |
| reg_info.mHour, reg_info.mMin, reg_info.mSec, |
| reg_info.mPackageName.string(), reg_info.mSensorHandle); |
| } |
| currentIndex = (currentIndex - 1 + SENSOR_REGISTRATIONS_BUF_SIZE) % |
| SENSOR_REGISTRATIONS_BUF_SIZE; |
| } while(startIndex != currentIndex); |
| } |
| } |
| write(fd, result.string(), result.size()); |
| return NO_ERROR; |
| } |
| |
| void SensorService::cleanupAutoDisabledSensorLocked(const sp<SensorEventConnection>& connection, |
| sensors_event_t const* buffer, const int count) { |
| for (int i=0 ; i<count ; i++) { |
| int handle = buffer[i].sensor; |
| if (buffer[i].type == SENSOR_TYPE_META_DATA) { |
| handle = buffer[i].meta_data.sensor; |
| } |
| if (connection->hasSensor(handle)) { |
| SensorInterface* sensor = mSensorMap.valueFor(handle); |
| // If this buffer has an event from a one_shot sensor and this connection is registered |
| // for this particular one_shot sensor, try cleaning up the connection. |
| if (sensor != NULL && |
| sensor->getSensor().getReportingMode() == AREPORTING_MODE_ONE_SHOT) { |
| sensor->autoDisable(connection.get(), handle); |
| cleanupWithoutDisableLocked(connection, handle); |
| } |
| |
| } |
| } |
| } |
| |
| bool SensorService::threadLoop() |
| { |
| ALOGD("nuSensorService thread starting..."); |
| |
| // each virtual sensor could generate an event per "real" event, that's why we need |
| // to size numEventMax much smaller than MAX_RECEIVE_BUFFER_EVENT_COUNT. |
| // in practice, this is too aggressive, but guaranteed to be enough. |
| const size_t minBufferSize = SensorEventQueue::MAX_RECEIVE_BUFFER_EVENT_COUNT; |
| const size_t numEventMax = minBufferSize / (1 + mVirtualSensorList.size()); |
| |
| SensorDevice& device(SensorDevice::getInstance()); |
| const size_t vcount = mVirtualSensorList.size(); |
| |
| const int halVersion = device.getHalDeviceVersion(); |
| do { |
| ssize_t count = device.poll(mSensorEventBuffer, numEventMax); |
| if (count < 0) { |
| ALOGE("sensor poll failed (%s)", strerror(-count)); |
| break; |
| } |
| |
| // Reset sensors_event_t.flags to zero for all events in the buffer. |
| for (int i = 0; i < count; i++) { |
| mSensorEventBuffer[i].flags = 0; |
| } |
| |
| // Make a copy of the connection vector as some connections may be removed during the |
| // course of this loop (especially when one-shot sensor events are present in the |
| // sensor_event buffer). Promote all connections to StrongPointers before the lock is |
| // acquired. If the destructor of the sp gets called when the lock is acquired, it may |
| // result in a deadlock as ~SensorEventConnection() needs to acquire mLock again for |
| // cleanup. So copy all the strongPointers to a vector before the lock is acquired. |
| SortedVector< sp<SensorEventConnection> > activeConnections; |
| populateActiveConnections(&activeConnections); |
| Mutex::Autolock _l(mLock); |
| // Poll has returned. Hold a wakelock if one of the events is from a wake up sensor. The |
| // rest of this loop is under a critical section protected by mLock. Acquiring a wakeLock, |
| // sending events to clients (incrementing SensorEventConnection::mWakeLockRefCount) should |
| // not be interleaved with decrementing SensorEventConnection::mWakeLockRefCount and |
| // releasing the wakelock. |
| bool bufferHasWakeUpEvent = false; |
| for (int i = 0; i < count; i++) { |
| if (isWakeUpSensorEvent(mSensorEventBuffer[i])) { |
| bufferHasWakeUpEvent = true; |
| break; |
| } |
| } |
| |
| if (bufferHasWakeUpEvent && !mWakeLockAcquired) { |
| setWakeLockAcquiredLocked(true); |
| } |
| recordLastValueLocked(mSensorEventBuffer, count); |
| |
| // handle virtual sensors |
| if (count && vcount) { |
| sensors_event_t const * const event = mSensorEventBuffer; |
| const size_t activeVirtualSensorCount = mActiveVirtualSensors.size(); |
| if (activeVirtualSensorCount) { |
| size_t k = 0; |
| SensorFusion& fusion(SensorFusion::getInstance()); |
| if (fusion.isEnabled()) { |
| for (size_t i=0 ; i<size_t(count) ; i++) { |
| fusion.process(event[i]); |
| } |
| } |
| for (size_t i=0 ; i<size_t(count) && k<minBufferSize ; i++) { |
| for (size_t j=0 ; j<activeVirtualSensorCount ; j++) { |
| if (count + k >= minBufferSize) { |
| ALOGE("buffer too small to hold all events: " |
| "count=%zd, k=%zu, size=%zu", |
| count, k, minBufferSize); |
| break; |
| } |
| sensors_event_t out; |
| SensorInterface* si = mActiveVirtualSensors.valueAt(j); |
| if (si->process(&out, event[i])) { |
| mSensorEventBuffer[count + k] = out; |
| k++; |
| } |
| } |
| } |
| if (k) { |
| // record the last synthesized values |
| recordLastValueLocked(&mSensorEventBuffer[count], k); |
| count += k; |
| // sort the buffer by time-stamps |
| sortEventBuffer(mSensorEventBuffer, count); |
| } |
| } |
| } |
| |
| // handle backward compatibility for RotationVector sensor |
| if (halVersion < SENSORS_DEVICE_API_VERSION_1_0) { |
| for (int i = 0; i < count; i++) { |
| if (mSensorEventBuffer[i].type == SENSOR_TYPE_ROTATION_VECTOR) { |
| // All the 4 components of the quaternion should be available |
| // No heading accuracy. Set it to -1 |
| mSensorEventBuffer[i].data[4] = -1; |
| } |
| } |
| } |
| |
| // Map flush_complete_events in the buffer to SensorEventConnections which called |
| // flush on the hardware sensor. mapFlushEventsToConnections[i] will be the |
| // SensorEventConnection mapped to the corresponding flush_complete_event in |
| // mSensorEventBuffer[i] if such a mapping exists (NULL otherwise). |
| for (int i = 0; i < count; ++i) { |
| mMapFlushEventsToConnections[i] = NULL; |
| if (mSensorEventBuffer[i].type == SENSOR_TYPE_META_DATA) { |
| const int sensor_handle = mSensorEventBuffer[i].meta_data.sensor; |
| SensorRecord* rec = mActiveSensors.valueFor(sensor_handle); |
| if (rec != NULL) { |
| mMapFlushEventsToConnections[i] = rec->getFirstPendingFlushConnection(); |
| rec->removeFirstPendingFlushConnection(); |
| } |
| } |
| } |
| |
| // Send our events to clients. Check the state of wake lock for each client and release the |
| // lock if none of the clients need it. |
| bool needsWakeLock = false; |
| size_t numConnections = activeConnections.size(); |
| for (size_t i=0 ; i < numConnections; ++i) { |
| if (activeConnections[i] != 0) { |
| activeConnections[i]->sendEvents(mSensorEventBuffer, count, mSensorEventScratch, |
| mMapFlushEventsToConnections); |
| needsWakeLock |= activeConnections[i]->needsWakeLock(); |
| // If the connection has one-shot sensors, it may be cleaned up after first trigger. |
| // Early check for one-shot sensors. |
| if (activeConnections[i]->hasOneShotSensors()) { |
| cleanupAutoDisabledSensorLocked(activeConnections[i], mSensorEventBuffer, |
| count); |
| } |
| } |
| } |
| |
| if (mWakeLockAcquired && !needsWakeLock) { |
| setWakeLockAcquiredLocked(false); |
| } |
| } while (!Thread::exitPending()); |
| |
| ALOGW("Exiting SensorService::threadLoop => aborting..."); |
| abort(); |
| return false; |
| } |
| |
| sp<Looper> SensorService::getLooper() const { |
| return mLooper; |
| } |
| |
| void SensorService::resetAllWakeLockRefCounts() { |
| SortedVector< sp<SensorEventConnection> > activeConnections; |
| populateActiveConnections(&activeConnections); |
| { |
| Mutex::Autolock _l(mLock); |
| for (size_t i=0 ; i < activeConnections.size(); ++i) { |
| if (activeConnections[i] != 0) { |
| activeConnections[i]->resetWakeLockRefCount(); |
| } |
| } |
| setWakeLockAcquiredLocked(false); |
| } |
| } |
| |
| void SensorService::setWakeLockAcquiredLocked(bool acquire) { |
| if (acquire) { |
| if (!mWakeLockAcquired) { |
| acquire_wake_lock(PARTIAL_WAKE_LOCK, WAKE_LOCK_NAME); |
| mWakeLockAcquired = true; |
| } |
| mLooper->wake(); |
| } else { |
| if (mWakeLockAcquired) { |
| release_wake_lock(WAKE_LOCK_NAME); |
| mWakeLockAcquired = false; |
| } |
| } |
| } |
| |
| bool SensorService::isWakeLockAcquired() { |
| Mutex::Autolock _l(mLock); |
| return mWakeLockAcquired; |
| } |
| |
| bool SensorService::SensorEventAckReceiver::threadLoop() { |
| ALOGD("new thread SensorEventAckReceiver"); |
| sp<Looper> looper = mService->getLooper(); |
| do { |
| bool wakeLockAcquired = mService->isWakeLockAcquired(); |
| int timeout = -1; |
| if (wakeLockAcquired) timeout = 5000; |
| int ret = looper->pollOnce(timeout); |
| if (ret == ALOOPER_POLL_TIMEOUT) { |
| mService->resetAllWakeLockRefCounts(); |
| } |
| } while(!Thread::exitPending()); |
| return false; |
| } |
| |
| void SensorService::recordLastValueLocked( |
| const sensors_event_t* buffer, size_t count) { |
| for (size_t i = 0; i < count; i++) { |
| if (buffer[i].type != SENSOR_TYPE_META_DATA) { |
| CircularBuffer* &circular_buf = mLastEventSeen.editValueFor(buffer[i].sensor); |
| if (circular_buf == NULL) { |
| circular_buf = new CircularBuffer(buffer[i].type); |
| } |
| circular_buf->addEvent(buffer[i]); |
| } |
| } |
| } |
| |
| void SensorService::sortEventBuffer(sensors_event_t* buffer, size_t count) |
| { |
| struct compar { |
| static int cmp(void const* lhs, void const* rhs) { |
| sensors_event_t const* l = static_cast<sensors_event_t const*>(lhs); |
| sensors_event_t const* r = static_cast<sensors_event_t const*>(rhs); |
| return l->timestamp - r->timestamp; |
| } |
| }; |
| qsort(buffer, count, sizeof(sensors_event_t), compar::cmp); |
| } |
| |
| String8 SensorService::getSensorName(int handle) const { |
| size_t count = mUserSensorList.size(); |
| for (size_t i=0 ; i<count ; i++) { |
| const Sensor& sensor(mUserSensorList[i]); |
| if (sensor.getHandle() == handle) { |
| return sensor.getName(); |
| } |
| } |
| String8 result("unknown"); |
| return result; |
| } |
| |
| bool SensorService::isVirtualSensor(int handle) const { |
| SensorInterface* sensor = mSensorMap.valueFor(handle); |
| return sensor->isVirtual(); |
| } |
| |
| bool SensorService::isWakeUpSensorEvent(const sensors_event_t& event) const { |
| int handle = event.sensor; |
| if (event.type == SENSOR_TYPE_META_DATA) { |
| handle = event.meta_data.sensor; |
| } |
| SensorInterface* sensor = mSensorMap.valueFor(handle); |
| return sensor != NULL && sensor->getSensor().isWakeUpSensor(); |
| } |
| |
| SensorService::SensorRecord * SensorService::getSensorRecord(int handle) { |
| return mActiveSensors.valueFor(handle); |
| } |
| |
| Vector<Sensor> SensorService::getSensorList(const String16& opPackageName) |
| { |
| char value[PROPERTY_VALUE_MAX]; |
| property_get("debug.sensors", value, "0"); |
| const Vector<Sensor>& initialSensorList = (atoi(value)) ? |
| mUserSensorListDebug : mUserSensorList; |
| Vector<Sensor> accessibleSensorList; |
| for (size_t i = 0; i < initialSensorList.size(); i++) { |
| Sensor sensor = initialSensorList[i]; |
| if (canAccessSensor(sensor, "getSensorList", opPackageName)) { |
| accessibleSensorList.add(sensor); |
| } else { |
| ALOGI("Skipped sensor %s because it requires permission %s and app op %d", |
| sensor.getName().string(), |
| sensor.getRequiredPermission().string(), |
| sensor.getRequiredAppOp()); |
| } |
| } |
| return accessibleSensorList; |
| } |
| |
| sp<ISensorEventConnection> SensorService::createSensorEventConnection(const String8& packageName, |
| int requestedMode, const String16& opPackageName) { |
| // Only 2 modes supported for a SensorEventConnection ... NORMAL and DATA_INJECTION. |
| if (requestedMode != NORMAL && requestedMode != DATA_INJECTION) { |
| return NULL; |
| } |
| |
| Mutex::Autolock _l(mLock); |
| // To create a client in DATA_INJECTION mode to inject data, SensorService should already be |
| // operating in DI mode. |
| if (requestedMode == DATA_INJECTION) { |
| if (mCurrentOperatingMode != DATA_INJECTION) return NULL; |
| if (!isWhiteListedPackage(packageName)) return NULL; |
| } |
| |
| uid_t uid = IPCThreadState::self()->getCallingUid(); |
| sp<SensorEventConnection> result(new SensorEventConnection(this, uid, packageName, |
| requestedMode == DATA_INJECTION, opPackageName)); |
| if (requestedMode == DATA_INJECTION) { |
| if (mActiveConnections.indexOf(result) < 0) { |
| mActiveConnections.add(result); |
| } |
| // Add the associated file descriptor to the Looper for polling whenever there is data to |
| // be injected. |
| result->updateLooperRegistration(mLooper); |
| } |
| return result; |
| } |
| |
| int SensorService::isDataInjectionEnabled() { |
| Mutex::Autolock _l(mLock); |
| return (mCurrentOperatingMode == DATA_INJECTION); |
| } |
| |
| status_t SensorService::resetToNormalMode() { |
| Mutex::Autolock _l(mLock); |
| return resetToNormalModeLocked(); |
| } |
| |
| status_t SensorService::resetToNormalModeLocked() { |
| SensorDevice& dev(SensorDevice::getInstance()); |
| dev.enableAllSensors(); |
| status_t err = dev.setMode(NORMAL); |
| mCurrentOperatingMode = NORMAL; |
| return err; |
| } |
| |
| void SensorService::cleanupConnection(SensorEventConnection* c) |
| { |
| Mutex::Autolock _l(mLock); |
| const wp<SensorEventConnection> connection(c); |
| size_t size = mActiveSensors.size(); |
| ALOGD_IF(DEBUG_CONNECTIONS, "%zu active sensors", size); |
| for (size_t i=0 ; i<size ; ) { |
| int handle = mActiveSensors.keyAt(i); |
| if (c->hasSensor(handle)) { |
| ALOGD_IF(DEBUG_CONNECTIONS, "%zu: disabling handle=0x%08x", i, handle); |
| SensorInterface* sensor = mSensorMap.valueFor( handle ); |
| ALOGE_IF(!sensor, "mSensorMap[handle=0x%08x] is null!", handle); |
| if (sensor) { |
| sensor->activate(c, false); |
| } |
| c->removeSensor(handle); |
| } |
| SensorRecord* rec = mActiveSensors.valueAt(i); |
| ALOGE_IF(!rec, "mActiveSensors[%zu] is null (handle=0x%08x)!", i, handle); |
| ALOGD_IF(DEBUG_CONNECTIONS, |
| "removing connection %p for sensor[%zu].handle=0x%08x", |
| c, i, handle); |
| |
| if (rec && rec->removeConnection(connection)) { |
| ALOGD_IF(DEBUG_CONNECTIONS, "... and it was the last connection"); |
| mActiveSensors.removeItemsAt(i, 1); |
| mActiveVirtualSensors.removeItem(handle); |
| delete rec; |
| size--; |
| } else { |
| i++; |
| } |
| } |
| c->updateLooperRegistration(mLooper); |
| mActiveConnections.remove(connection); |
| BatteryService::cleanup(c->getUid()); |
| if (c->needsWakeLock()) { |
| checkWakeLockStateLocked(); |
| } |
| } |
| |
| Sensor SensorService::getSensorFromHandle(int handle) const { |
| return mSensorMap.valueFor(handle)->getSensor(); |
| } |
| |
| status_t SensorService::enable(const sp<SensorEventConnection>& connection, |
| int handle, nsecs_t samplingPeriodNs, nsecs_t maxBatchReportLatencyNs, int reservedFlags, |
| const String16& opPackageName) |
| { |
| if (mInitCheck != NO_ERROR) |
| return mInitCheck; |
| |
| SensorInterface* sensor = mSensorMap.valueFor(handle); |
| if (sensor == NULL) { |
| return BAD_VALUE; |
| } |
| |
| if (!canAccessSensor(sensor->getSensor(), "Tried enabling", opPackageName)) { |
| return BAD_VALUE; |
| } |
| |
| Mutex::Autolock _l(mLock); |
| if ((mCurrentOperatingMode == RESTRICTED || mCurrentOperatingMode == DATA_INJECTION) |
| && !isWhiteListedPackage(connection->getPackageName())) { |
| return INVALID_OPERATION; |
| } |
| |
| SensorRecord* rec = mActiveSensors.valueFor(handle); |
| if (rec == 0) { |
| rec = new SensorRecord(connection); |
| mActiveSensors.add(handle, rec); |
| if (sensor->isVirtual()) { |
| mActiveVirtualSensors.add(handle, sensor); |
| } |
| } else { |
| if (rec->addConnection(connection)) { |
| // this sensor is already activated, but we are adding a connection that uses it. |
| // Immediately send down the last known value of the requested sensor if it's not a |
| // "continuous" sensor. |
| if (sensor->getSensor().getReportingMode() == AREPORTING_MODE_ON_CHANGE) { |
| // NOTE: The wake_up flag of this event may get set to |
| // WAKE_UP_SENSOR_EVENT_NEEDS_ACK if this is a wake_up event. |
| CircularBuffer *circular_buf = mLastEventSeen.valueFor(handle); |
| if (circular_buf) { |
| sensors_event_t event; |
| memset(&event, 0, sizeof(event)); |
| // It is unlikely that this buffer is empty as the sensor is already active. |
| // One possible corner case may be two applications activating an on-change |
| // sensor at the same time. |
| if(circular_buf->populateLastEvent(&event)) { |
| event.sensor = handle; |
| if (event.version == sizeof(sensors_event_t)) { |
| if (isWakeUpSensorEvent(event) && !mWakeLockAcquired) { |
| setWakeLockAcquiredLocked(true); |
| } |
| connection->sendEvents(&event, 1, NULL); |
| if (!connection->needsWakeLock() && mWakeLockAcquired) { |
| checkWakeLockStateLocked(); |
| } |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| if (connection->addSensor(handle)) { |
| BatteryService::enableSensor(connection->getUid(), handle); |
| // the sensor was added (which means it wasn't already there) |
| // so, see if this connection becomes active |
| if (mActiveConnections.indexOf(connection) < 0) { |
| mActiveConnections.add(connection); |
| } |
| } else { |
| ALOGW("sensor %08x already enabled in connection %p (ignoring)", |
| handle, connection.get()); |
| } |
| |
| nsecs_t minDelayNs = sensor->getSensor().getMinDelayNs(); |
| if (samplingPeriodNs < minDelayNs) { |
| samplingPeriodNs = minDelayNs; |
| } |
| |
| ALOGD_IF(DEBUG_CONNECTIONS, "Calling batch handle==%d flags=%d" |
| "rate=%" PRId64 " timeout== %" PRId64"", |
| handle, reservedFlags, samplingPeriodNs, maxBatchReportLatencyNs); |
| |
| status_t err = sensor->batch(connection.get(), handle, 0, samplingPeriodNs, |
| maxBatchReportLatencyNs); |
| |
| // Call flush() before calling activate() on the sensor. Wait for a first |
| // flush complete event before sending events on this connection. Ignore |
| // one-shot sensors which don't support flush(). Ignore on-change sensors |
| // to maintain the on-change logic (any on-change events except the initial |
| // one should be trigger by a change in value). Also if this sensor isn't |
| // already active, don't call flush(). |
| const SensorDevice& device(SensorDevice::getInstance()); |
| if (err == NO_ERROR && |
| sensor->getSensor().getReportingMode() != AREPORTING_MODE_ONE_SHOT && |
| sensor->getSensor().getReportingMode() != AREPORTING_MODE_ON_CHANGE && |
| rec->getNumConnections() > 1) { |
| if (device.getHalDeviceVersion() >= SENSORS_DEVICE_API_VERSION_1_1) { |
| connection->setFirstFlushPending(handle, true); |
| status_t err_flush = sensor->flush(connection.get(), handle); |
| // Flush may return error if the underlying h/w sensor uses an older HAL. |
| if (err_flush == NO_ERROR) { |
| rec->addPendingFlushConnection(connection.get()); |
| } else { |
| connection->setFirstFlushPending(handle, false); |
| } |
| } |
| } |
| |
| if (err == NO_ERROR) { |
| ALOGD_IF(DEBUG_CONNECTIONS, "Calling activate on %d", handle); |
| err = sensor->activate(connection.get(), true); |
| } |
| |
| if (err == NO_ERROR) { |
| connection->updateLooperRegistration(mLooper); |
| SensorRegistrationInfo ®_info = |
| mLastNSensorRegistrations.editItemAt(mNextSensorRegIndex); |
| reg_info.mSensorHandle = handle; |
| reg_info.mSamplingRateUs = samplingPeriodNs/1000; |
| reg_info.mMaxReportLatencyUs = maxBatchReportLatencyNs/1000; |
| reg_info.mActivated = true; |
| reg_info.mPackageName = connection->getPackageName(); |
| time_t rawtime = time(NULL); |
| struct tm * timeinfo = localtime(&rawtime); |
| reg_info.mHour = timeinfo->tm_hour; |
| reg_info.mMin = timeinfo->tm_min; |
| reg_info.mSec = timeinfo->tm_sec; |
| mNextSensorRegIndex = (mNextSensorRegIndex + 1) % SENSOR_REGISTRATIONS_BUF_SIZE; |
| } |
| |
| if (device.getHalDeviceVersion() < SENSORS_DEVICE_API_VERSION_1_1) { |
| // Pre-1.1 sensor HALs had no flush method, and relied on setDelay at init |
| sensor->setDelay(connection.get(), handle, samplingPeriodNs); |
| } |
| |
| if (err != NO_ERROR) { |
| // batch/activate has failed, reset our state. |
| cleanupWithoutDisableLocked(connection, handle); |
| } |
| return err; |
| } |
| |
| status_t SensorService::disable(const sp<SensorEventConnection>& connection, |
| int handle) |
| { |
| if (mInitCheck != NO_ERROR) |
| return mInitCheck; |
| |
| Mutex::Autolock _l(mLock); |
| status_t err = cleanupWithoutDisableLocked(connection, handle); |
| if (err == NO_ERROR) { |
| SensorInterface* sensor = mSensorMap.valueFor(handle); |
| err = sensor ? sensor->activate(connection.get(), false) : status_t(BAD_VALUE); |
| |
| } |
| if (err == NO_ERROR) { |
| SensorRegistrationInfo ®_info = |
| mLastNSensorRegistrations.editItemAt(mNextSensorRegIndex); |
| reg_info.mActivated = false; |
| reg_info.mPackageName= connection->getPackageName(); |
| reg_info.mSensorHandle = handle; |
| time_t rawtime = time(NULL); |
| struct tm * timeinfo = localtime(&rawtime); |
| reg_info.mHour = timeinfo->tm_hour; |
| reg_info.mMin = timeinfo->tm_min; |
| reg_info.mSec = timeinfo->tm_sec; |
| mNextSensorRegIndex = (mNextSensorRegIndex + 1) % SENSOR_REGISTRATIONS_BUF_SIZE; |
| } |
| return err; |
| } |
| |
| status_t SensorService::cleanupWithoutDisable( |
| const sp<SensorEventConnection>& connection, int handle) { |
| Mutex::Autolock _l(mLock); |
| return cleanupWithoutDisableLocked(connection, handle); |
| } |
| |
| status_t SensorService::cleanupWithoutDisableLocked( |
| const sp<SensorEventConnection>& connection, int handle) { |
| SensorRecord* rec = mActiveSensors.valueFor(handle); |
| if (rec) { |
| // see if this connection becomes inactive |
| if (connection->removeSensor(handle)) { |
| BatteryService::disableSensor(connection->getUid(), handle); |
| } |
| if (connection->hasAnySensor() == false) { |
| connection->updateLooperRegistration(mLooper); |
| mActiveConnections.remove(connection); |
| } |
| // see if this sensor becomes inactive |
| if (rec->removeConnection(connection)) { |
| mActiveSensors.removeItem(handle); |
| mActiveVirtualSensors.removeItem(handle); |
| delete rec; |
| } |
| return NO_ERROR; |
| } |
| return BAD_VALUE; |
| } |
| |
| status_t SensorService::setEventRate(const sp<SensorEventConnection>& connection, |
| int handle, nsecs_t ns, const String16& opPackageName) |
| { |
| if (mInitCheck != NO_ERROR) |
| return mInitCheck; |
| |
| SensorInterface* sensor = mSensorMap.valueFor(handle); |
| if (!sensor) |
| return BAD_VALUE; |
| |
| if (!canAccessSensor(sensor->getSensor(), "Tried configuring", opPackageName)) { |
| return BAD_VALUE; |
| } |
| |
| if (ns < 0) |
| return BAD_VALUE; |
| |
| nsecs_t minDelayNs = sensor->getSensor().getMinDelayNs(); |
| if (ns < minDelayNs) { |
| ns = minDelayNs; |
| } |
| |
| return sensor->setDelay(connection.get(), handle, ns); |
| } |
| |
| status_t SensorService::flushSensor(const sp<SensorEventConnection>& connection, |
| const String16& opPackageName) { |
| if (mInitCheck != NO_ERROR) return mInitCheck; |
| SensorDevice& dev(SensorDevice::getInstance()); |
| const int halVersion = dev.getHalDeviceVersion(); |
| status_t err(NO_ERROR); |
| Mutex::Autolock _l(mLock); |
| // Loop through all sensors for this connection and call flush on each of them. |
| for (size_t i = 0; i < connection->mSensorInfo.size(); ++i) { |
| const int handle = connection->mSensorInfo.keyAt(i); |
| SensorInterface* sensor = mSensorMap.valueFor(handle); |
| if (sensor->getSensor().getReportingMode() == AREPORTING_MODE_ONE_SHOT) { |
| ALOGE("flush called on a one-shot sensor"); |
| err = INVALID_OPERATION; |
| continue; |
| } |
| if (halVersion <= SENSORS_DEVICE_API_VERSION_1_0 || isVirtualSensor(handle)) { |
| // For older devices just increment pending flush count which will send a trivial |
| // flush complete event. |
| connection->incrementPendingFlushCount(handle); |
| } else { |
| if (!canAccessSensor(sensor->getSensor(), "Tried flushing", opPackageName)) { |
| err = INVALID_OPERATION; |
| continue; |
| } |
| status_t err_flush = sensor->flush(connection.get(), handle); |
| if (err_flush == NO_ERROR) { |
| SensorRecord* rec = mActiveSensors.valueFor(handle); |
| if (rec != NULL) rec->addPendingFlushConnection(connection); |
| } |
| err = (err_flush != NO_ERROR) ? err_flush : err; |
| } |
| } |
| return err; |
| } |
| |
| bool SensorService::canAccessSensor(const Sensor& sensor, const char* operation, |
| const String16& opPackageName) { |
| const String8& requiredPermission = sensor.getRequiredPermission(); |
| |
| if (requiredPermission.length() <= 0) { |
| return true; |
| } |
| |
| bool hasPermission = false; |
| |
| // Runtime permissions can't use the cache as they may change. |
| if (sensor.isRequiredPermissionRuntime()) { |
| hasPermission = checkPermission(String16(requiredPermission), |
| IPCThreadState::self()->getCallingPid(), IPCThreadState::self()->getCallingUid()); |
| } else { |
| hasPermission = PermissionCache::checkCallingPermission(String16(requiredPermission)); |
| } |
| |
| if (!hasPermission) { |
| ALOGE("%s a sensor (%s) without holding its required permission: %s", |
| operation, sensor.getName().string(), sensor.getRequiredPermission().string()); |
| return false; |
| } |
| |
| const int32_t opCode = sensor.getRequiredAppOp(); |
| if (opCode >= 0) { |
| AppOpsManager appOps; |
| if (appOps.noteOp(opCode, IPCThreadState::self()->getCallingUid(), opPackageName) |
| != AppOpsManager::MODE_ALLOWED) { |
| ALOGE("%s a sensor (%s) without enabled required app op: %D", |
| operation, sensor.getName().string(), opCode); |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| void SensorService::checkWakeLockState() { |
| Mutex::Autolock _l(mLock); |
| checkWakeLockStateLocked(); |
| } |
| |
| void SensorService::checkWakeLockStateLocked() { |
| if (!mWakeLockAcquired) { |
| return; |
| } |
| bool releaseLock = true; |
| for (size_t i=0 ; i<mActiveConnections.size() ; i++) { |
| sp<SensorEventConnection> connection(mActiveConnections[i].promote()); |
| if (connection != 0) { |
| if (connection->needsWakeLock()) { |
| releaseLock = false; |
| break; |
| } |
| } |
| } |
| if (releaseLock) { |
| setWakeLockAcquiredLocked(false); |
| } |
| } |
| |
| void SensorService::sendEventsFromCache(const sp<SensorEventConnection>& connection) { |
| Mutex::Autolock _l(mLock); |
| connection->writeToSocketFromCache(); |
| if (connection->needsWakeLock()) { |
| setWakeLockAcquiredLocked(true); |
| } |
| } |
| |
| void SensorService::populateActiveConnections( |
| SortedVector< sp<SensorEventConnection> >* activeConnections) { |
| Mutex::Autolock _l(mLock); |
| for (size_t i=0 ; i < mActiveConnections.size(); ++i) { |
| sp<SensorEventConnection> connection(mActiveConnections[i].promote()); |
| if (connection != 0) { |
| activeConnections->add(connection); |
| } |
| } |
| } |
| |
| bool SensorService::isWhiteListedPackage(const String8& packageName) { |
| return (packageName.contains(mWhiteListedPackage.string())); |
| } |
| |
| int SensorService::getNumEventsForSensorType(int sensor_event_type) { |
| switch (sensor_event_type) { |
| case SENSOR_TYPE_ROTATION_VECTOR: |
| case SENSOR_TYPE_GEOMAGNETIC_ROTATION_VECTOR: |
| return 5; |
| |
| case SENSOR_TYPE_MAGNETIC_FIELD_UNCALIBRATED: |
| case SENSOR_TYPE_GYROSCOPE_UNCALIBRATED: |
| return 6; |
| |
| case SENSOR_TYPE_GAME_ROTATION_VECTOR: |
| return 4; |
| |
| case SENSOR_TYPE_SIGNIFICANT_MOTION: |
| case SENSOR_TYPE_STEP_DETECTOR: |
| case SENSOR_TYPE_STEP_COUNTER: |
| return 1; |
| |
| default: |
| return 3; |
| } |
| } |
| |
| // --------------------------------------------------------------------------- |
| SensorService::SensorRecord::SensorRecord( |
| const sp<SensorEventConnection>& connection) |
| { |
| mConnections.add(connection); |
| } |
| |
| bool SensorService::SensorRecord::addConnection( |
| const sp<SensorEventConnection>& connection) |
| { |
| if (mConnections.indexOf(connection) < 0) { |
| mConnections.add(connection); |
| return true; |
| } |
| return false; |
| } |
| |
| bool SensorService::SensorRecord::removeConnection( |
| const wp<SensorEventConnection>& connection) |
| { |
| ssize_t index = mConnections.indexOf(connection); |
| if (index >= 0) { |
| mConnections.removeItemsAt(index, 1); |
| } |
| // Remove this connections from the queue of flush() calls made on this sensor. |
| for (Vector< wp<SensorEventConnection> >::iterator it = |
| mPendingFlushConnections.begin(); it != mPendingFlushConnections.end();) { |
| |
| if (it->unsafe_get() == connection.unsafe_get()) { |
| it = mPendingFlushConnections.erase(it); |
| } else { |
| ++it; |
| } |
| } |
| return mConnections.size() ? false : true; |
| } |
| |
| void SensorService::SensorRecord::addPendingFlushConnection( |
| const sp<SensorEventConnection>& connection) { |
| mPendingFlushConnections.add(connection); |
| } |
| |
| void SensorService::SensorRecord::removeFirstPendingFlushConnection() { |
| if (mPendingFlushConnections.size() > 0) { |
| mPendingFlushConnections.removeAt(0); |
| } |
| } |
| |
| SensorService::SensorEventConnection * |
| SensorService::SensorRecord::getFirstPendingFlushConnection() { |
| if (mPendingFlushConnections.size() > 0) { |
| return mPendingFlushConnections[0].unsafe_get(); |
| } |
| return NULL; |
| } |
| |
| void SensorService::SensorRecord::clearAllPendingFlushConnections() { |
| mPendingFlushConnections.clear(); |
| } |
| |
| |
| // --------------------------------------------------------------------------- |
| SensorService::TrimmedSensorEvent::TrimmedSensorEvent(int sensorType) { |
| mTimestamp = -1; |
| const int numData = SensorService::getNumEventsForSensorType(sensorType); |
| if (sensorType == SENSOR_TYPE_STEP_COUNTER) { |
| mStepCounter = 0; |
| } else { |
| mData = new float[numData]; |
| for (int i = 0; i < numData; ++i) { |
| mData[i] = -1.0; |
| } |
| } |
| mHour = mMin = mSec = INT32_MIN; |
| } |
| |
| bool SensorService::TrimmedSensorEvent::isSentinel(const TrimmedSensorEvent& event) { |
| return (event.mHour == INT32_MIN && event.mMin == INT32_MIN && event.mSec == INT32_MIN); |
| } |
| // -------------------------------------------------------------------------- |
| SensorService::CircularBuffer::CircularBuffer(int sensor_event_type) { |
| mNextInd = 0; |
| mBufSize = CIRCULAR_BUF_SIZE; |
| if (sensor_event_type == SENSOR_TYPE_STEP_COUNTER || |
| sensor_event_type == SENSOR_TYPE_SIGNIFICANT_MOTION || |
| sensor_event_type == SENSOR_TYPE_ACCELEROMETER) { |
| mBufSize = CIRCULAR_BUF_SIZE * 5; |
| } |
| mTrimmedSensorEventArr = new TrimmedSensorEvent *[mBufSize]; |
| mSensorType = sensor_event_type; |
| for (int i = 0; i < mBufSize; ++i) { |
| mTrimmedSensorEventArr[i] = new TrimmedSensorEvent(mSensorType); |
| } |
| } |
| |
| void SensorService::CircularBuffer::addEvent(const sensors_event_t& sensor_event) { |
| TrimmedSensorEvent *curr_event = mTrimmedSensorEventArr[mNextInd]; |
| curr_event->mTimestamp = sensor_event.timestamp; |
| if (mSensorType == SENSOR_TYPE_STEP_COUNTER) { |
| curr_event->mStepCounter = sensor_event.u64.step_counter; |
| } else { |
| memcpy(curr_event->mData, sensor_event.data, |
| sizeof(float) * SensorService::getNumEventsForSensorType(mSensorType)); |
| } |
| time_t rawtime = time(NULL); |
| struct tm * timeinfo = localtime(&rawtime); |
| curr_event->mHour = timeinfo->tm_hour; |
| curr_event->mMin = timeinfo->tm_min; |
| curr_event->mSec = timeinfo->tm_sec; |
| mNextInd = (mNextInd + 1) % mBufSize; |
| } |
| |
| void SensorService::CircularBuffer::printBuffer(String8& result) const { |
| const int numData = SensorService::getNumEventsForSensorType(mSensorType); |
| int i = mNextInd, eventNum = 1; |
| result.appendFormat("last %d events = < ", mBufSize); |
| do { |
| if (TrimmedSensorEvent::isSentinel(*mTrimmedSensorEventArr[i])) { |
| // Sentinel, ignore. |
| i = (i + 1) % mBufSize; |
| continue; |
| } |
| result.appendFormat("%d) ", eventNum++); |
| if (mSensorType == SENSOR_TYPE_STEP_COUNTER) { |
| result.appendFormat("%llu,", mTrimmedSensorEventArr[i]->mStepCounter); |
| } else { |
| for (int j = 0; j < numData; ++j) { |
| result.appendFormat("%5.1f,", mTrimmedSensorEventArr[i]->mData[j]); |
| } |
| } |
| result.appendFormat("%lld %02d:%02d:%02d ", mTrimmedSensorEventArr[i]->mTimestamp, |
| mTrimmedSensorEventArr[i]->mHour, mTrimmedSensorEventArr[i]->mMin, |
| mTrimmedSensorEventArr[i]->mSec); |
| i = (i + 1) % mBufSize; |
| } while (i != mNextInd); |
| result.appendFormat(">\n"); |
| } |
| |
| bool SensorService::CircularBuffer::populateLastEvent(sensors_event_t *event) { |
| int lastEventInd = (mNextInd - 1 + mBufSize) % mBufSize; |
| // Check if the buffer is empty. |
| if (TrimmedSensorEvent::isSentinel(*mTrimmedSensorEventArr[lastEventInd])) { |
| return false; |
| } |
| event->version = sizeof(sensors_event_t); |
| event->type = mSensorType; |
| event->timestamp = mTrimmedSensorEventArr[lastEventInd]->mTimestamp; |
| if (mSensorType == SENSOR_TYPE_STEP_COUNTER) { |
| event->u64.step_counter = mTrimmedSensorEventArr[lastEventInd]->mStepCounter; |
| } else { |
| memcpy(event->data, mTrimmedSensorEventArr[lastEventInd]->mData, |
| sizeof(float) * SensorService::getNumEventsForSensorType(mSensorType)); |
| } |
| return true; |
| } |
| |
| SensorService::CircularBuffer::~CircularBuffer() { |
| for (int i = 0; i < mBufSize; ++i) { |
| delete mTrimmedSensorEventArr[i]; |
| } |
| delete [] mTrimmedSensorEventArr; |
| } |
| |
| // --------------------------------------------------------------------------- |
| |
| SensorService::SensorEventConnection::SensorEventConnection( |
| const sp<SensorService>& service, uid_t uid, String8 packageName, bool isDataInjectionMode, |
| const String16& opPackageName) |
| : mService(service), mUid(uid), mWakeLockRefCount(0), mHasLooperCallbacks(false), |
| mDead(false), mDataInjectionMode(isDataInjectionMode), mEventCache(NULL), |
| mCacheSize(0), mMaxCacheSize(0), mPackageName(packageName), mOpPackageName(opPackageName) { |
| mChannel = new BitTube(mService->mSocketBufferSize); |
| #if DEBUG_CONNECTIONS |
| mEventsReceived = mEventsSentFromCache = mEventsSent = 0; |
| mTotalAcksNeeded = mTotalAcksReceived = 0; |
| #endif |
| } |
| |
| SensorService::SensorEventConnection::~SensorEventConnection() { |
| ALOGD_IF(DEBUG_CONNECTIONS, "~SensorEventConnection(%p)", this); |
| mService->cleanupConnection(this); |
| if (mEventCache != NULL) { |
| delete mEventCache; |
| } |
| } |
| |
| void SensorService::SensorEventConnection::onFirstRef() { |
| LooperCallback::onFirstRef(); |
| } |
| |
| bool SensorService::SensorEventConnection::needsWakeLock() { |
| Mutex::Autolock _l(mConnectionLock); |
| return !mDead && mWakeLockRefCount > 0; |
| } |
| |
| void SensorService::SensorEventConnection::resetWakeLockRefCount() { |
| Mutex::Autolock _l(mConnectionLock); |
| mWakeLockRefCount = 0; |
| } |
| |
| void SensorService::SensorEventConnection::dump(String8& result) { |
| Mutex::Autolock _l(mConnectionLock); |
| result.appendFormat("\tOperating Mode: %s\n",mDataInjectionMode ? "DATA_INJECTION" : "NORMAL"); |
| result.appendFormat("\t %s | WakeLockRefCount %d | uid %d | cache size %d | " |
| "max cache size %d\n", mPackageName.string(), mWakeLockRefCount, mUid, mCacheSize, |
| mMaxCacheSize); |
| for (size_t i = 0; i < mSensorInfo.size(); ++i) { |
| const FlushInfo& flushInfo = mSensorInfo.valueAt(i); |
| result.appendFormat("\t %s 0x%08x | status: %s | pending flush events %d \n", |
| mService->getSensorName(mSensorInfo.keyAt(i)).string(), |
| mSensorInfo.keyAt(i), |
| flushInfo.mFirstFlushPending ? "First flush pending" : |
| "active", |
| flushInfo.mPendingFlushEventsToSend); |
| } |
| #if DEBUG_CONNECTIONS |
| result.appendFormat("\t events recvd: %d | sent %d | cache %d | dropped %d |" |
| " total_acks_needed %d | total_acks_recvd %d\n", |
| mEventsReceived, |
| mEventsSent, |
| mEventsSentFromCache, |
| mEventsReceived - (mEventsSentFromCache + mEventsSent + mCacheSize), |
| mTotalAcksNeeded, |
| mTotalAcksReceived); |
| #endif |
| } |
| |
| bool SensorService::SensorEventConnection::addSensor(int32_t handle) { |
| Mutex::Autolock _l(mConnectionLock); |
| if (!canAccessSensor(mService->getSensorFromHandle(handle), |
| "Tried adding", mOpPackageName)) { |
| return false; |
| } |
| if (mSensorInfo.indexOfKey(handle) < 0) { |
| mSensorInfo.add(handle, FlushInfo()); |
| return true; |
| } |
| return false; |
| } |
| |
| bool SensorService::SensorEventConnection::removeSensor(int32_t handle) { |
| Mutex::Autolock _l(mConnectionLock); |
| if (mSensorInfo.removeItem(handle) >= 0) { |
| return true; |
| } |
| return false; |
| } |
| |
| bool SensorService::SensorEventConnection::hasSensor(int32_t handle) const { |
| Mutex::Autolock _l(mConnectionLock); |
| return mSensorInfo.indexOfKey(handle) >= 0; |
| } |
| |
| bool SensorService::SensorEventConnection::hasAnySensor() const { |
| Mutex::Autolock _l(mConnectionLock); |
| return mSensorInfo.size() ? true : false; |
| } |
| |
| bool SensorService::SensorEventConnection::hasOneShotSensors() const { |
| Mutex::Autolock _l(mConnectionLock); |
| for (size_t i = 0; i < mSensorInfo.size(); ++i) { |
| const int handle = mSensorInfo.keyAt(i); |
| if (mService->getSensorFromHandle(handle).getReportingMode() == AREPORTING_MODE_ONE_SHOT) { |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| String8 SensorService::SensorEventConnection::getPackageName() const { |
| return mPackageName; |
| } |
| |
| void SensorService::SensorEventConnection::setFirstFlushPending(int32_t handle, |
| bool value) { |
| Mutex::Autolock _l(mConnectionLock); |
| ssize_t index = mSensorInfo.indexOfKey(handle); |
| if (index >= 0) { |
| FlushInfo& flushInfo = mSensorInfo.editValueAt(index); |
| flushInfo.mFirstFlushPending = value; |
| } |
| } |
| |
| void SensorService::SensorEventConnection::updateLooperRegistration(const sp<Looper>& looper) { |
| Mutex::Autolock _l(mConnectionLock); |
| updateLooperRegistrationLocked(looper); |
| } |
| |
| void SensorService::SensorEventConnection::updateLooperRegistrationLocked( |
| const sp<Looper>& looper) { |
| bool isConnectionActive = (mSensorInfo.size() > 0 && !mDataInjectionMode) || |
| mDataInjectionMode; |
| // If all sensors are unregistered OR Looper has encountered an error, we |
| // can remove the Fd from the Looper if it has been previously added. |
| if (!isConnectionActive || mDead) { |
| if (mHasLooperCallbacks) { |
| ALOGD_IF(DEBUG_CONNECTIONS, "%p removeFd fd=%d", this, mChannel->getSendFd()); |
| looper->removeFd(mChannel->getSendFd()); |
| mHasLooperCallbacks = false; |
| } |
| return; |
| } |
| |
| int looper_flags = 0; |
| if (mCacheSize > 0) looper_flags |= ALOOPER_EVENT_OUTPUT; |
| if (mDataInjectionMode) looper_flags |= ALOOPER_EVENT_INPUT; |
| for (size_t i = 0; i < mSensorInfo.size(); ++i) { |
| const int handle = mSensorInfo.keyAt(i); |
| if (mService->getSensorFromHandle(handle).isWakeUpSensor()) { |
| looper_flags |= ALOOPER_EVENT_INPUT; |
| break; |
| } |
| } |
| // If flags is still set to zero, we don't need to add this fd to the Looper, if |
| // the fd has already been added, remove it. This is likely to happen when ALL the |
| // events stored in the cache have been sent to the corresponding app. |
| if (looper_flags == 0) { |
| if (mHasLooperCallbacks) { |
| ALOGD_IF(DEBUG_CONNECTIONS, "removeFd fd=%d", mChannel->getSendFd()); |
| looper->removeFd(mChannel->getSendFd()); |
| mHasLooperCallbacks = false; |
| } |
| return; |
| } |
| // Add the file descriptor to the Looper for receiving acknowledegments if the app has |
| // registered for wake-up sensors OR for sending events in the cache. |
| int ret = looper->addFd(mChannel->getSendFd(), 0, looper_flags, this, NULL); |
| if (ret == 1) { |
| ALOGD_IF(DEBUG_CONNECTIONS, "%p addFd fd=%d", this, mChannel->getSendFd()); |
| mHasLooperCallbacks = true; |
| } else { |
| ALOGE("Looper::addFd failed ret=%d fd=%d", ret, mChannel->getSendFd()); |
| } |
| } |
| |
| void SensorService::SensorEventConnection::incrementPendingFlushCount(int32_t handle) { |
| Mutex::Autolock _l(mConnectionLock); |
| ssize_t index = mSensorInfo.indexOfKey(handle); |
| if (index >= 0) { |
| FlushInfo& flushInfo = mSensorInfo.editValueAt(index); |
| flushInfo.mPendingFlushEventsToSend++; |
| } |
| } |
| |
| status_t SensorService::SensorEventConnection::sendEvents( |
| sensors_event_t const* buffer, size_t numEvents, |
| sensors_event_t* scratch, |
| SensorEventConnection const * const * mapFlushEventsToConnections) { |
| // filter out events not for this connection |
| int count = 0; |
| Mutex::Autolock _l(mConnectionLock); |
| if (scratch) { |
| size_t i=0; |
| while (i<numEvents) { |
| int32_t sensor_handle = buffer[i].sensor; |
| if (buffer[i].type == SENSOR_TYPE_META_DATA) { |
| ALOGD_IF(DEBUG_CONNECTIONS, "flush complete event sensor==%d ", |
| buffer[i].meta_data.sensor); |
| // Setting sensor_handle to the correct sensor to ensure the sensor events per |
| // connection are filtered correctly. buffer[i].sensor is zero for meta_data |
| // events. |
| sensor_handle = buffer[i].meta_data.sensor; |
| } |
| ssize_t index = mSensorInfo.indexOfKey(sensor_handle); |
| // Check if this connection has registered for this sensor. If not continue to the |
| // next sensor_event. |
| if (index < 0) { |
| ++i; |
| continue; |
| } |
| |
| FlushInfo& flushInfo = mSensorInfo.editValueAt(index); |
| // Check if there is a pending flush_complete event for this sensor on this connection. |
| if (buffer[i].type == SENSOR_TYPE_META_DATA && flushInfo.mFirstFlushPending == true && |
| this == mapFlushEventsToConnections[i]) { |
| flushInfo.mFirstFlushPending = false; |
| ALOGD_IF(DEBUG_CONNECTIONS, "First flush event for sensor==%d ", |
| buffer[i].meta_data.sensor); |
| ++i; |
| continue; |
| } |
| |
| // If there is a pending flush complete event for this sensor on this connection, |
| // ignore the event and proceed to the next. |
| if (flushInfo.mFirstFlushPending) { |
| ++i; |
| continue; |
| } |
| |
| do { |
| // Keep copying events into the scratch buffer as long as they are regular |
| // sensor_events are from the same sensor_handle OR they are flush_complete_events |
| // from the same sensor_handle AND the current connection is mapped to the |
| // corresponding flush_complete_event. |
| if (buffer[i].type == SENSOR_TYPE_META_DATA) { |
| if (this == mapFlushEventsToConnections[i]) { |
| scratch[count++] = buffer[i]; |
| } |
| ++i; |
| } else { |
| // Regular sensor event, just copy it to the scratch buffer. |
| scratch[count++] = buffer[i++]; |
| } |
| } while ((i<numEvents) && ((buffer[i].sensor == sensor_handle && |
| buffer[i].type != SENSOR_TYPE_META_DATA) || |
| (buffer[i].type == SENSOR_TYPE_META_DATA && |
| buffer[i].meta_data.sensor == sensor_handle))); |
| } |
| } else { |
| scratch = const_cast<sensors_event_t *>(buffer); |
| count = numEvents; |
| } |
| |
| sendPendingFlushEventsLocked(); |
| // Early return if there are no events for this connection. |
| if (count == 0) { |
| return status_t(NO_ERROR); |
| } |
| |
| #if DEBUG_CONNECTIONS |
| mEventsReceived += count; |
| #endif |
| if (mCacheSize != 0) { |
| // There are some events in the cache which need to be sent first. Copy this buffer to |
| // the end of cache. |
| if (mCacheSize + count <= mMaxCacheSize) { |
| memcpy(&mEventCache[mCacheSize], scratch, count * sizeof(sensors_event_t)); |
| mCacheSize += count; |
| } else { |
| // Check if any new sensors have registered on this connection which may have increased |
| // the max cache size that is desired. |
| if (mCacheSize + count < computeMaxCacheSizeLocked()) { |
| reAllocateCacheLocked(scratch, count); |
| return status_t(NO_ERROR); |
| } |
| // Some events need to be dropped. |
| int remaningCacheSize = mMaxCacheSize - mCacheSize; |
| if (remaningCacheSize != 0) { |
| memcpy(&mEventCache[mCacheSize], scratch, |
| remaningCacheSize * sizeof(sensors_event_t)); |
| } |
| int numEventsDropped = count - remaningCacheSize; |
| countFlushCompleteEventsLocked(mEventCache, numEventsDropped); |
| // Drop the first "numEventsDropped" in the cache. |
| memmove(mEventCache, &mEventCache[numEventsDropped], |
| (mCacheSize - numEventsDropped) * sizeof(sensors_event_t)); |
| |
| // Copy the remainingEvents in scratch buffer to the end of cache. |
| memcpy(&mEventCache[mCacheSize - numEventsDropped], scratch + remaningCacheSize, |
| numEventsDropped * sizeof(sensors_event_t)); |
| } |
| return status_t(NO_ERROR); |
| } |
| |
| int index_wake_up_event = findWakeUpSensorEventLocked(scratch, count); |
| if (index_wake_up_event >= 0) { |
| scratch[index_wake_up_event].flags |= WAKE_UP_SENSOR_EVENT_NEEDS_ACK; |
| ++mWakeLockRefCount; |
| #if DEBUG_CONNECTIONS |
| ++mTotalAcksNeeded; |
| #endif |
| } |
| |
| // NOTE: ASensorEvent and sensors_event_t are the same type. |
| ssize_t size = SensorEventQueue::write(mChannel, |
| reinterpret_cast<ASensorEvent const*>(scratch), count); |
| if (size < 0) { |
| // Write error, copy events to local cache. |
| if (index_wake_up_event >= 0) { |
| // If there was a wake_up sensor_event, reset the flag. |
| scratch[index_wake_up_event].flags &= ~WAKE_UP_SENSOR_EVENT_NEEDS_ACK; |
| if (mWakeLockRefCount > 0) { |
| --mWakeLockRefCount; |
| } |
| #if DEBUG_CONNECTIONS |
| --mTotalAcksNeeded; |
| #endif |
| } |
| if (mEventCache == NULL) { |
| mMaxCacheSize = computeMaxCacheSizeLocked(); |
| mEventCache = new sensors_event_t[mMaxCacheSize]; |
| mCacheSize = 0; |
| } |
| memcpy(&mEventCache[mCacheSize], scratch, count * sizeof(sensors_event_t)); |
| mCacheSize += count; |
| |
| // Add this file descriptor to the looper to get a callback when this fd is available for |
| // writing. |
| updateLooperRegistrationLocked(mService->getLooper()); |
| return size; |
| } |
| |
| #if DEBUG_CONNECTIONS |
| if (size > 0) { |
| mEventsSent += count; |
| } |
| #endif |
| |
| return size < 0 ? status_t(size) : status_t(NO_ERROR); |
| } |
| |
| void SensorService::SensorEventConnection::reAllocateCacheLocked(sensors_event_t const* scratch, |
| int count) { |
| sensors_event_t *eventCache_new; |
| const int new_cache_size = computeMaxCacheSizeLocked(); |
| // Allocate new cache, copy over events from the old cache & scratch, free up memory. |
| eventCache_new = new sensors_event_t[new_cache_size]; |
| memcpy(eventCache_new, mEventCache, mCacheSize * sizeof(sensors_event_t)); |
| memcpy(&eventCache_new[mCacheSize], scratch, count * sizeof(sensors_event_t)); |
| |
| ALOGD_IF(DEBUG_CONNECTIONS, "reAllocateCacheLocked maxCacheSize=%d %d", mMaxCacheSize, |
| new_cache_size); |
| |
| delete mEventCache; |
| mEventCache = eventCache_new; |
| mCacheSize += count; |
| mMaxCacheSize = new_cache_size; |
| } |
| |
| void SensorService::SensorEventConnection::sendPendingFlushEventsLocked() { |
| ASensorEvent flushCompleteEvent; |
| memset(&flushCompleteEvent, 0, sizeof(flushCompleteEvent)); |
| flushCompleteEvent.type = SENSOR_TYPE_META_DATA; |
| // Loop through all the sensors for this connection and check if there are any pending |
| // flush complete events to be sent. |
| for (size_t i = 0; i < mSensorInfo.size(); ++i) { |
| FlushInfo& flushInfo = mSensorInfo.editValueAt(i); |
| while (flushInfo.mPendingFlushEventsToSend > 0) { |
| const int sensor_handle = mSensorInfo.keyAt(i); |
| flushCompleteEvent.meta_data.sensor = sensor_handle; |
| bool wakeUpSensor = mService->getSensorFromHandle(sensor_handle).isWakeUpSensor(); |
| if (wakeUpSensor) { |
| ++mWakeLockRefCount; |
| flushCompleteEvent.flags |= WAKE_UP_SENSOR_EVENT_NEEDS_ACK; |
| } |
| ssize_t size = SensorEventQueue::write(mChannel, &flushCompleteEvent, 1); |
| if (size < 0) { |
| if (wakeUpSensor) --mWakeLockRefCount; |
| return; |
| } |
| ALOGD_IF(DEBUG_CONNECTIONS, "sent dropped flush complete event==%d ", |
| flushCompleteEvent.meta_data.sensor); |
| flushInfo.mPendingFlushEventsToSend--; |
| } |
| } |
| } |
| |
| void SensorService::SensorEventConnection::writeToSocketFromCache() { |
| // At a time write at most half the size of the receiver buffer in SensorEventQueue OR |
| // half the size of the socket buffer allocated in BitTube whichever is smaller. |
| const int maxWriteSize = helpers::min(SensorEventQueue::MAX_RECEIVE_BUFFER_EVENT_COUNT/2, |
| int(mService->mSocketBufferSize/(sizeof(sensors_event_t)*2))); |
| Mutex::Autolock _l(mConnectionLock); |
| // Send pending flush complete events (if any) |
| sendPendingFlushEventsLocked(); |
| for (int numEventsSent = 0; numEventsSent < mCacheSize;) { |
| const int numEventsToWrite = helpers::min(mCacheSize - numEventsSent, maxWriteSize); |
| int index_wake_up_event = |
| findWakeUpSensorEventLocked(mEventCache + numEventsSent, numEventsToWrite); |
| if (index_wake_up_event >= 0) { |
| mEventCache[index_wake_up_event + numEventsSent].flags |= |
| WAKE_UP_SENSOR_EVENT_NEEDS_ACK; |
| ++mWakeLockRefCount; |
| #if DEBUG_CONNECTIONS |
| ++mTotalAcksNeeded; |
| #endif |
| } |
| |
| ssize_t size = SensorEventQueue::write(mChannel, |
| reinterpret_cast<ASensorEvent const*>(mEventCache + numEventsSent), |
| numEventsToWrite); |
| if (size < 0) { |
| if (index_wake_up_event >= 0) { |
| // If there was a wake_up sensor_event, reset the flag. |
| mEventCache[index_wake_up_event + numEventsSent].flags &= |
| ~WAKE_UP_SENSOR_EVENT_NEEDS_ACK; |
| if (mWakeLockRefCount > 0) { |
| --mWakeLockRefCount; |
| } |
| #if DEBUG_CONNECTIONS |
| --mTotalAcksNeeded; |
| #endif |
| } |
| memmove(mEventCache, &mEventCache[numEventsSent], |
| (mCacheSize - numEventsSent) * sizeof(sensors_event_t)); |
| ALOGD_IF(DEBUG_CONNECTIONS, "wrote %d events from cache size==%d ", |
| numEventsSent, mCacheSize); |
| mCacheSize -= numEventsSent; |
| return; |
| } |
| numEventsSent += numEventsToWrite; |
| #if DEBUG_CONNECTIONS |
| mEventsSentFromCache += numEventsToWrite; |
| #endif |
| } |
| ALOGD_IF(DEBUG_CONNECTIONS, "wrote all events from cache size=%d ", mCacheSize); |
| // All events from the cache have been sent. Reset cache size to zero. |
| mCacheSize = 0; |
| // There are no more events in the cache. We don't need to poll for write on the fd. |
| // Update Looper registration. |
| updateLooperRegistrationLocked(mService->getLooper()); |
| } |
| |
| void SensorService::SensorEventConnection::countFlushCompleteEventsLocked( |
| sensors_event_t const* scratch, const int numEventsDropped) { |
| ALOGD_IF(DEBUG_CONNECTIONS, "dropping %d events ", numEventsDropped); |
| // Count flushComplete events in the events that are about to the dropped. These will be sent |
| // separately before the next batch of events. |
| for (int j = 0; j < numEventsDropped; ++j) { |
| if (scratch[j].type == SENSOR_TYPE_META_DATA) { |
| FlushInfo& flushInfo = mSensorInfo.editValueFor(scratch[j].meta_data.sensor); |
| flushInfo.mPendingFlushEventsToSend++; |
| ALOGD_IF(DEBUG_CONNECTIONS, "increment pendingFlushCount %d", |
| flushInfo.mPendingFlushEventsToSend); |
| } |
| } |
| return; |
| } |
| |
| int SensorService::SensorEventConnection::findWakeUpSensorEventLocked( |
| sensors_event_t const* scratch, const int count) { |
| for (int i = 0; i < count; ++i) { |
| if (mService->isWakeUpSensorEvent(scratch[i])) { |
| return i; |
| } |
| } |
| return -1; |
| } |
| |
| sp<BitTube> SensorService::SensorEventConnection::getSensorChannel() const |
| { |
| return mChannel; |
| } |
| |
| status_t SensorService::SensorEventConnection::enableDisable( |
| int handle, bool enabled, nsecs_t samplingPeriodNs, nsecs_t maxBatchReportLatencyNs, |
| int reservedFlags) |
| { |
| status_t err; |
| if (enabled) { |
| err = mService->enable(this, handle, samplingPeriodNs, maxBatchReportLatencyNs, |
| reservedFlags, mOpPackageName); |
| |
| } else { |
| err = mService->disable(this, handle); |
| } |
| return err; |
| } |
| |
| status_t SensorService::SensorEventConnection::setEventRate( |
| int handle, nsecs_t samplingPeriodNs) |
| { |
| return mService->setEventRate(this, handle, samplingPeriodNs, mOpPackageName); |
| } |
| |
| status_t SensorService::SensorEventConnection::flush() { |
| return mService->flushSensor(this, mOpPackageName); |
| } |
| |
| int SensorService::SensorEventConnection::handleEvent(int fd, int events, void* /*data*/) { |
| if (events & ALOOPER_EVENT_HANGUP || events & ALOOPER_EVENT_ERROR) { |
| { |
| // If the Looper encounters some error, set the flag mDead, reset mWakeLockRefCount, |
| // and remove the fd from Looper. Call checkWakeLockState to know if SensorService |
| // can release the wake-lock. |
| ALOGD_IF(DEBUG_CONNECTIONS, "%p Looper error %d", this, fd); |
| Mutex::Autolock _l(mConnectionLock); |
| mDead = true; |
| mWakeLockRefCount = 0; |
| updateLooperRegistrationLocked(mService->getLooper()); |
| } |
| mService->checkWakeLockState(); |
| if (mDataInjectionMode) { |
| // If the Looper has encountered some error in data injection mode, reset SensorService |
| // back to normal mode. |
| mService->resetToNormalMode(); |
| mDataInjectionMode = false; |
| } |
| return 1; |
| } |
| |
| if (events & ALOOPER_EVENT_INPUT) { |
| unsigned char buf[sizeof(sensors_event_t)]; |
| ssize_t numBytesRead = ::recv(fd, buf, sizeof(buf), MSG_DONTWAIT); |
| { |
| Mutex::Autolock _l(mConnectionLock); |
| if (numBytesRead == sizeof(sensors_event_t)) { |
| if (!mDataInjectionMode) { |
| ALOGE("Data injected in normal mode, dropping event" |
| "package=%s uid=%d", mPackageName.string(), mUid); |
| // Unregister call backs. |
| return 0; |
| } |
| SensorDevice& dev(SensorDevice::getInstance()); |
| sensors_event_t sensor_event; |
| memset(&sensor_event, 0, sizeof(sensor_event)); |
| memcpy(&sensor_event, buf, sizeof(sensors_event_t)); |
| Sensor sensor = mService->getSensorFromHandle(sensor_event.sensor); |
| sensor_event.type = sensor.getType(); |
| dev.injectSensorData(&sensor_event); |
| #if DEBUG_CONNECTIONS |
| ++mEventsReceived; |
| #endif |
| } else if (numBytesRead == sizeof(uint32_t)) { |
| uint32_t numAcks = 0; |
| memcpy(&numAcks, buf, numBytesRead); |
| // Sanity check to ensure there are no read errors in recv, numAcks is always |
| // within the range and not zero. If any of the above don't hold reset |
| // mWakeLockRefCount to zero. |
| if (numAcks > 0 && numAcks < mWakeLockRefCount) { |
| mWakeLockRefCount -= numAcks; |
| } else { |
| mWakeLockRefCount = 0; |
| } |
| #if DEBUG_CONNECTIONS |
| mTotalAcksReceived += numAcks; |
| #endif |
| } else { |
| // Read error, reset wakelock refcount. |
| mWakeLockRefCount = 0; |
| } |
| } |
| // Check if wakelock can be released by sensorservice. mConnectionLock needs to be released |
| // here as checkWakeLockState() will need it. |
| if (mWakeLockRefCount == 0) { |
| mService->checkWakeLockState(); |
| } |
| // continue getting callbacks. |
| return 1; |
| } |
| |
| if (events & ALOOPER_EVENT_OUTPUT) { |
| // send sensor data that is stored in mEventCache for this connection. |
| mService->sendEventsFromCache(this); |
| } |
| return 1; |
| } |
| |
| int SensorService::SensorEventConnection::computeMaxCacheSizeLocked() const { |
| size_t fifoWakeUpSensors = 0; |
| size_t fifoNonWakeUpSensors = 0; |
| for (size_t i = 0; i < mSensorInfo.size(); ++i) { |
| const Sensor& sensor = mService->getSensorFromHandle(mSensorInfo.keyAt(i)); |
| if (sensor.getFifoReservedEventCount() == sensor.getFifoMaxEventCount()) { |
| // Each sensor has a reserved fifo. Sum up the fifo sizes for all wake up sensors and |
| // non wake_up sensors. |
| if (sensor.isWakeUpSensor()) { |
| fifoWakeUpSensors += sensor.getFifoReservedEventCount(); |
| } else { |
| fifoNonWakeUpSensors += sensor.getFifoReservedEventCount(); |
| } |
| } else { |
| // Shared fifo. Compute the max of the fifo sizes for wake_up and non_wake up sensors. |
| if (sensor.isWakeUpSensor()) { |
| fifoWakeUpSensors = fifoWakeUpSensors > sensor.getFifoMaxEventCount() ? |
| fifoWakeUpSensors : sensor.getFifoMaxEventCount(); |
| |
| } else { |
| fifoNonWakeUpSensors = fifoNonWakeUpSensors > sensor.getFifoMaxEventCount() ? |
| fifoNonWakeUpSensors : sensor.getFifoMaxEventCount(); |
| |
| } |
| } |
| } |
| if (fifoWakeUpSensors + fifoNonWakeUpSensors == 0) { |
| // It is extremely unlikely that there is a write failure in non batch mode. Return a cache |
| // size that is equal to that of the batch mode. |
| // ALOGW("Write failure in non-batch mode"); |
| return MAX_SOCKET_BUFFER_SIZE_BATCHED/sizeof(sensors_event_t); |
| } |
| return fifoWakeUpSensors + fifoNonWakeUpSensors; |
| } |
| |
| // --------------------------------------------------------------------------- |
| }; // namespace android |
| |